

FP7-ICT-611140 CARRE

Project co-funded by the European Commission
under the Information and Communication Technologies
(ICT) 7

th
 Framework Programme

D.6.1. DSS Runtime Infrastructure

Rafał Kłoda, Jan Piwiński, Robert Ugodziński

December 2015

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 2 of 43

CARRE Contacts

Project Coordinator: Eleni Kaldoudi kaldoudi@med.duth.gr

Project Manager: George Drosatos gdrosato@ee.duth.gr

DUTH
Democritus University of Thrace

Eleni Kaldoudi kaldoudi@med.duth.gr

OU
The Open University

John Domingue john.domingue@open.ac.uk

BED:
Bedfordshire University

Enjie Liu Enjie.Liu@beds.ac.uk

VULSK:
Vilnius University Hospital Santariškių Klinikos

Domantas Stundys Domantas.Stundys@santa.lt

KTU
Kaunas University of Technology

Arūnas Lukoševičius arunas.lukosevicius@ktu.lt

PIAP
Industrial Research Institute for Automation
& Measurements

Roman Szewczyk rszewczyk@piap.pl

Disclaimer

This document contains description of the CARRE project findings, work and products. The authors of this
document have taken any available measure in order for its content to be accurate, consistent and lawful.
However, neither the project consortium as a whole nor the individual partners that implicitly or explicitly
participated in the creation and publication of this document hold any sort of responsibility that might occur
as a result of using its content.

In case you believe that this document harms in any way IPR held by you as a person or as a representative
of an entity, please do notify us immediately.

The content of this publication is the sole responsibility of CARRE consortium and can in no way be taken to
reflect the views of the European Union.

CARRE is a Specific Targeted Research Project partially funded by the European Union,
under FP7-ICT-2013-10, Theme 5.1. “Personalized health, active ageing & independent
living”.

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 3 of 43

Document Control Page

Project

Contract No.: 611140

Acronym: CARRE

Title: Personalized Patient Empowerment and Shared Decision Support
for Cardiorenal Disease and Comorbidities

Type: STREP

Start: 1 November 2013

End: 31 October 2016

Programme: FP7-ICT-2013.5.1

Website: http://www.carre-project.eu/

Deliverable

Deliverable No.: D.6.1

Deliverable Title: DSS Runtime Infrastructure

Responsible Partner: PIAP

Authors: Rafał Kłoda, Jan Piwiński, Robert Ugodziński

Input from: All partners

Peer Reviewers: Allan Third (OU), George Drosatos (DUTH)

Task: T.6.1 DSS Runtime Infrastructure

Task duration: 9 months: 1 February 2015 to 31 December 2015

Work Package: WP6: Domain specific empowerment & decision support services

Work Package Leader: PIAP – Rafał Kłoda

Due Date: 31 December 2015

Actual Delivery Date: 14 January 2016

Dissemination Level: PU

Nature: R & D

Files and format: Deliverable report: 1 pdf file
Software source code available from project web site, see Annex 1:
https://www.carre-project.eu/innovation/dss-runtime-infrastructure/

Version: 03

Status: Draft

 Consortium reviewed

 WP leader accepted

 Coordinator accepted

 EC accepted

http://www.carre-project.eu/
https://www.carre-project.eu/innovation/dss-runtime-infrastructure/

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 4 of 43

Document Revision History

Version Date Modifications Contributors

v01.0 1 December 2015 Deliverable – outline Jan Piwiński

Rafał Kłoda

v01.1 10 December 2015 VULSK input to DSS Domantas Stundys

v01.2 29 December 2015 Draft version Rafał Kłoda

Jan Piwiński

Robert Ugodziński

v01.3 8 January 2016 PIAP internal review Roman Szewczyk

v02 11 January 2016 Reviewed version Jan Piwiński

v02.4 13 January 2016 Updated after review (Allan and George) Jan Piwiński

Robert Ugodziński

v03 14 January 2016 Edited for uniformity and conformance to QA Eleni Kaldoudi

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 5 of 43

Table of Contents

Terms and Definitions ... 8

1. Introduction .. 9

2. DSS in CARRE .. 11

2.1. DSS Architecture high level view ... 11

2.2. Use cases .. 12

3. DSS concept and promising methodology ... 12

4. DSS data sources and outputs ... 14

4.1. DSS data sources .. 14

4.2. DSS outputs.. 15

4.2.1 Data stored to private RDF .. 15
4.2.2 Risk Alarms .. 15
4.2.3 Visual interface .. 16

5. DSS components ... 16

5.1. Data mining app with rich functions API for Matlab .. 16

5.2. Prototype of reasoning API for personal risk factor model for Matlab .. 18

5.3. Web infrastructure for DSS ... 19

6. Conclusion .. 21

Annex 1 DSS Runtime Infrastructure Software .. 22

What is CARRE: DSS Runtime Infrastructure? ... 23

Download ... 23

The CARRE DSS Runtime Infrastructure is Open Source .. 23

Annex 2 DSS Matlab code examples ... 24

Annex 2.1: CARRE database API ... 25

rGetTypes ... 25
rGetNodesByAtribue... 26
rGetNodeAtributes .. 26
rGetAtributes .. 27
rGetNodeAtribute .. 28
rGetNodesByType .. 29
rQuery ... 30
rGetTerms .. 31

Annex 2.2: CARRE Reasoning API .. 32

rDataBase ... 32
rPatient ... 35

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 6 of 43

List of Figures

Figure 1. DSS relationships with other deliverables. ... 10
Figure 2. DSS high level architecture. ... 12
Figure 3. Functional schema of DSS. .. 13
Figure 4. RDF data explorer Matlab GUI. .. 18
Figure 5. Prototype of reasoning API. ... 19
Figure 6. Web infrastructure for DSS. ... 20
Figure 7. Patients view for medical expert... 20
Figure 8. Details of the patient view for medical expert. .. 20
Figure 9. Attaching new patient to medical expert. ... 21

List of Tables

Table 1. DSS alerts. ... 15
Table 2. Rich functions API for Matlab. ... 17
Table 3. DSS web service code metrics (C# code). .. 21

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 7 of 43

Executive Summary

Patient empowerment and decision support services (DSS) is a personalised service for disease progression
management. This CARRE component is an event driven service, which supports and enable real-time
decision support for patients. The DSS in CARRE requires, firstly the risk assessment of comorbidities
probability occurrence based on input from risk association model and other variables, secondly suggests
treatment guidance by providing alarms (based on a particular patient’s observables) and education
materials that are suitable to a particular patient’s needs, thirdly provides identification of important changes,
provide advices and personal life-style guidance to the patient, based on monitoring of current medical
treatment data in order to manage risks for comorbidities or progression of disease to more severe stages.

Work package 6 “Domain specific empowerment & decision support services” aims to address the
aforementioned challenges. The 6.1 task “Development of DSS runtime infrastructure” requires the
development of integrated infrastructure to support the development and maintenance of real-time decision
support and empowerment services, both for a particular patient and for the medical professionals. The
platform will serve as an infrastructure for the further forecasting analytics, which are part of the objectives of
this WP and aims to deliver system functionality aggregated into manageable and reusable modules, which
ease communication with other CARRE system components.

This document is a deliverable report of 6.1 “DSS runtime infrastructure” of WP6 in CARRE project. In
particular it covers tasks designated in Task 6.1. This deliverable report focuses on the design and initial
implementation of DSS components in order to provide personalized services to both Patient Application and
Medical Expert to be able to provide run-time decision based on current status of incoming data to the
CARRE RDF Repositories.

About CARRE

CARRE is an EU FP7-ICT funded project with the goal to provide innovative means for the management
of comorbidities (multiple co-occurring medical conditions), especially in the case of chronic cardiac and
renal disease patients or persons with increased risk of such conditions.

Sources of medical and other knowledge will be semantically linked with sensor outputs to provide clinical
information personalised to the individual patient, to be able to track the progression and interactions of
comorbid conditions. Visual analytics will be employed so that patients and clinicians will be able to visualise,
understand and interact with this linked knowledge and take advantage of personalised empowerment
services supported by a dedicated decision support system.

The ultimate goal is to provide the means for patients with comorbidities to take an active role in care
processes, including self-care and shared decision-making, and to support medical professionals in
understanding and treating comorbidities via an integrative approach.

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 8 of 43

Terms and Definitions

The following are definitions of terms, abbreviations and acronyms used in this document.

Term Definition

API Application programming interface

CARRE
repository

The backend major component of the CARRE platform responsible for storing, indexing
and accessing the public and private RDF data

DoW Description of Work

DSS Decision Support Service

LOD Linked Open Data cloud

PHR Personal Health Record

RDF Resource Description Framework: a standard model for data interchange on the Web.

RESTful API A Web API that adheres to the REpresentational State Transfer architectural constraints

SPARQL A RDF query language.

Triple A statement in the subject-predicate-object expression

XML Extensible Markup Language (XML) is a markup language that defines a set of rules for
encoding documents in a format that is both human-readable and machine-readable.

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 9 of 43

1. Introduction

This document reports on the infrastructure design and development of the Decision Support Service (DSS).
This CARRE system component is a personalised service for disease progression management and is
mainly responsible for supporting and maintaining of real-time decision support for patients.

Decision making in healthcare is a complex process in terms of number of parameters and variables,
outcome possibilities and amount of information must be processed

1
.

Decision support systems (DSS) can assist patients and provide to him advices, recommendations and
diagnosis of problems in cardiorenal domain, where the optimal solutions for a given sort of data about the
possible consequences are determined similar as human experts in the field.

A modern intelligent decision support system not only provides access to data and models. It is also a
significant development in the field of analytical data processing, data warehousing and artificial intelligence-
aided methods of knowledge discovery in databases i.e. data mining.

The present document is following up on project tasks and their reports as well as system solutions created
until now and enable to understand how DSS environment work and how it will be implemented in ultimate
CARRE system. Hereby, we discuss how the DSS is informed by already submitted CARRE deliverables

2
:

- D.2.1 Domain analysis & use case definition. The document gives an insight on the overall domain

analysis, including medical domain analysis, overview on comorbidities management, patient`s

empowerment as well as the definition of CARRE main scenario. All of the above have been taken

into account in the design of CARRE DSS, especially following initial use cases dedicated to DSS.

- D.2.2 Functional requirements & information model. This document presents the first version of the

CARRE ontology, by providing a general scheme for the description of data model for risk, intended

to represent current medical knowledge regarding cardiorenal risk factors and their interactions. This

document is considered as fundamental for DSS in terms of risk factors association as well as their

relationships and their attributes (patient observables, observables conditions, ratio type, ratio value,

medical evidence, diseases symptoms, treatment, sensor input, alarm, educational material, etc.).

The CARRE information model has already been used by DSS infrastructure, having in mind the

functional requirements dedicated to DSS that need to be met.

- D.2.4 CARRE metadata scheme and & ontology. This deliverable presents the first, complete

version of the CARRE ontology as well as comprises the set of tools developed for crafting the

CARRE vocabulary as well as software artefacts, which take into account interactions with CARRE

services, like DSS.

- D.2.5 CARRE Architecture. CARRE architecture reports on the architectural design of the overall

CARRE services environment. The CARRE architecture is described through the definition of the

major software components and the description on how these components operate with each other.

This deliverable provides an overall design for the CARRE integrated environment and takes into

account the various data sources harvesting and information extracting components,

- D.4.1 Semantic repository design & implementation. The document presents the semantic repository

developed for managing large volumes of data in the form of RDF triples - information stored in the

CARRE repository, which act as the central point of information storage for DSS.

- D.4.2 Schema mapping & metadata enrichment. This report discusses the various external

vocabularies used, together with the alignment of these vocabularies with the CARRE ontology. The

document presents the data sources, ontologies and vocabularies used for annotating and enriching

the data collected within CARRE, which are now under processing by DSS.

1
 Upkar Varshney: A model for improving quality of decisions in mobile health, Decision Support Systems, Volume 62,

June 2014, pp. 66-77

2
 https://www.carre-project.eu/project-info/deliverables/

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 10 of 43

Figure 1 represents graphically aforementioned relations of DSS with previous deliverables. The DSS
infrastructure is a basis for currently running tasks under WP6: T.6.2 Development of personalized service
for the patient, which captures relationships among many variables and risk factors to allow to determine the
potential decision based on particular set of conditions; T.6.3 Development of personalized service for the
medical expert, where the user-friendly repositories explorer is planned to enable experts to prepare specific
decision for particular patient; T.6.4 Tools for adapting existing and creating new services, which provide
adaptive platform for customizing previously developed services to CARRE system during the integration
phase of the project.

 Figure 1. DSS relationships with other deliverables.

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 11 of 43

The current document aims to describe technical details of the DSS infrastructure and development
activities. It defines the major software components that are crucial for meeting the requirements and use
cases of DSS.

The remainder of this document is structured as follows: Section 2 presents the overall, high level DSS
architecture in CARRE system. Section 3 describes the concept and methodology taken towards DSS
development. Section 4 presents in detail DSS data sources and outputs to be stored again in CARRE
repositories. Section 5 presents in detail each of the DSS components.

2. DSS in CARRE

In CARRE system decision support service will determine the optimal solution, predict future trends and
patterns based on information data analytics and formal reasoning formed on ontologies, which are the main
techniques supported by RDF Linked Data, which then will be the main source of decision recommendations
for CARRE. Together with Interactive Visualisation Interface, DSS will support patient application, by
providing user-friendly visualisation of the current disease status with appropriate personal recommendation
and advices to his lifestyle.

In CARRE system the data to decision support service will be retrieved via RESTful web service APIs
provided both by the public and private CARRE data repositories. After receiving the appropriate data the
DSS will analyse the data to determine optimal recommendations and solutions for the patient to fulfil
following users queries and interactions with this system component. Based on assessment of inputs from
semantic data entry system the Personal Patient DSS should select educational materials based on current
disease state and risks, suggest personal diet adherence and physical activities plan as well as provide
alerting mechanisms and appropriate advises for changes.

All the above pieces of information will be send to private RDF Repository to be an input data to Interactive
Visualisation Interface, by means of text, variables and recommendation to intuitive and user-friendly
visualisation in patient application.

2.1. DSS Architecture high level view

The decision support service (DSS) is another data source, which provides real-time decision support data
for patients. Secure APIs are used to provide encrypted communication, such as in the case of retrieving
data from private repository. It is planned, for privacy reasons and not only, that DSS output will be stored in
patient’s private repository in RDF format. It is the most natural way, since RDF Repository is the central
data storage of future CARRE system, so it enables to query the data for visualisation purposes in intuitive
and user-friendly form.

Figure 2 below presents a high-level view of the overall DSS data flow illustrating the major identified
components and how these are connected to one another.

Based on assessment of inputs from semantic data entry system the Personal Patient DSS should select
educational materials based on current disease state and risks, create personal diet adherence and physical
activities plan as well as provide alerting mechanisms of dangerous value of patient health condition and
appropriate advice for changes.

DSS involves the development of decision support services for the medical expert. By means of this
component medical expert, based on his expertise in given area and scientific literature as well as based on
patient disease condition and calculated risks model for disease progression will propose the
recommendation to particular patient life-style and provide guidance to treatment plan. For example, if
patient’s Systolic Blood Presure (SPB) is > 140 mmHg or Diastolic Blood Presure (DBP) > 90 mmHg, the risk
factor data says that risk ratio (the likelihood of negative negative outcome to occur) of getting heart failure
caused by hypertension is 1.58, therefore the DSS should recommend to patient to wait for 1-3 min and take
a repeat reading; and if then patient’s SBP remains > 180 mmHg or DBP > 110 mmHg, the DSS sould send
the red alarm to call an ambulance.

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 12 of 43

Figure 2. DSS high level architecture.

2.2. Use cases

The previous deliverable D.2.1 Domain analysis & use case definition, three high level DSS use cases have

been identified, which should be taken into account throughout the development of DSS:

 UC_PE_10: The goal of this use case is to inform patients about their current health status and their
risks.

 UC_PE_11: The goal of this use case is to inform end users about new medical evidence available
about their wises.

 UC_PA_17: The goal of this use case is to inform patients that are in increased risk of acute
episode.

 UC_PA_18: The goal of this use case is to inform patients to make the necessary and appropriate
diet changes in order to reduce the risk of their disease.

3. DSS concept and promising methodology

In CARRE system decision support service will determine the optimal solution, by mining RDF repositories
data to predict future trends and patterns as well as information data analytics and formal reasoning from
ontologies, which are the main techniques supported by RDF Linked Data and ontologies.

This method will search particular patient’s observables and will assign risk factors and evidences as well as
will show the probability occurrence of given risk factor.

3

The proposed decision support service (DSS) that computes outcomes for patient and medical expert
contains two key components:

1. Data pre-processing which is responsible for filtering and reduce the amount of information that must

be processed.
4

3
 The prototype of tools for this are presented in Section 5.

4
 There are 63 observables in CARRE risk model. Even one measurement of given observable per day would mean e.g.

30 data points needed to calculate given abserveble condition (for example BMI), whether the patient is moderately
obese in the last month.

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 13 of 43

2. Reasoning which provide algorithms to generate appropriate alarms and the probability of risk

factors occurrences based on given patient data, as shown in Figure 3.

The concept explained above doesn’t model new risk factors, but requires that the inputs for the DSS are
observables values, values ranges from patient’s private RDF repository and risk elements existing in public
RDF repository. The output are alarms and a set of k predicted probabilities, in the range of [0, 1] interval,
reflecting occurrence of given risk factors for particular patient health condition. If probability value will be
close to one that means – the given risk factor occurs and the patient is at given risk of cardiorenal disease
or comorbidity.

Due to the fact that several the DSS necessary input (data sources) are under development our DSS is also
our infrastructure is steadily improved and customizing to changes to CARRE systems components. Thanks
to this other promising method for data pre-processing and connected with these algorithms are still
considered.

Figure 3. Functional schema of DSS.

Decision support can provide complex information to end user in terms of number of alerts and variables and
outcome possibilities. The manner in which way information are presented has influence on proper
visualization on the final interface. Output from DSS should consider following aspects:

- Firstly, focus on the most important information.

- Reduce the number of presented items and utilize various design enhancements.

- Colour coding of information (e.g. Risk Alarms presented in Table 1 in section 4.2.2).

DSS runtime infrastructure will provide:

- Framework and service to both patient and medical expert application.

- Forecasting models and analytics based on the risk model fulfilled by data in repositories.

- Run-time decision based on current status of incoming data.

DSS will support patient application and will be the main source of decision recommendations for CARRE.
This includes the analysis of the generic and personalized risk model so as to allow the CARRE
stakeholders to identify and assess critical medical conditions. Its aim will be to produce meaningful
information that will be passed to the end-user interface with the synergy of the visualization component.

It should be stressed, that such large amount of information requires hierarchical presentation. Only in such
case both easy access to all this data as well as intuitive operation is required. This will create the
requirements for the development of logical interface.

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 14 of 43

Analyses of requirements and interaction design will be done on the base of direct consultations carried out
among patients and medical experts in cardiac and renal diseases domain during the integration,
customization and update towards patient’s and expert’s perspectives.

In addition to the classical view of the decision making process, there is an understanding of this process as
a knowledge-based. This approach assumes that a decision is made based on fragments of knowledge
describing the essence of information which is necessary to take decision. In this context, decision-making is
a process of creating a new, previously non-existent piece of knowledge, which will be created by converting
and combining pieces of existing knowledge available in both repositories.

4. DSS data sources and outputs

4.1. DSS data sources

In CARRE system the data for DSS will be provided via common interfaces and common data exchange
method, which will ease the further integration. The DSS will communicate with CARRE RDF repositories
over SPARQL (a RDF query language) to retrieve the RDF files from both repositories. For DSS service the
CARRE semantic repository will be a RDF store accessible as a RESTful Web Service. The same approach
will be used to access both repositories, with security built-in to the methods for accessing private data. This
method was described in detail in submitted reports under work package WP4 Data Enrichment, correlation
and interlinking.The server allows the storage of RDF triples (an item of RDF data) under a number of
individual graphs. An access to the triples within a particular graph is restricted to a certain user, since it is
confidential, health-related data. According to this, the private RDF repository stores the data related to
individual patient, in a form of separate, restricted RDF graph. Particularly the RDF private repository relates
to following data:

a) Sensors data and measurements, retrieved by 3rd party health market devices, which measure

physical activity (steps, walking distance, burned calories, sleep quality), heart rate, blood pressure,

blood glucose and weight. This data is collected via sensors manufactures internet application (see

D.2.3 Data source identification & description) and stored in RDF Repository by the developed

sensor aggregators, that are developed and described in D.3.2 Sensors and Aggregators for

Personal Sensor Data.

b) PHR data. Personal medical data related to particular patient, retrieved by developed aggregator

from the PHR system, intended for use by CARRE patients, particularly VivaPort
5
 and Microsoft

HealthVault
6
 as well as PHR Manual Data Entry System

7
, which is a browser-based application that

allows patients to record their medical data by entering it manually (see D.3.3 Aggregators for

personal medical & lifestyle data from on-line sources).

The public RDF repository is available for public querying without authentication, because it contains no
confidential personal data for any patient. Particularly the RDF public repository relates to following data:

a) Educational and medical scientific metadata, which involve the development of aggregators for

medical evidence data and patient educational content from on-line authoritative sources. These

kinds of information are either openly available to public, such as some government medical advice

sites, or access based on subscriptions, such as PubMED
8
, and MedLinePlus

9
. More detailed

description is provided in D.3.4 Aggregators for medical evidence and educational material

(meta)data from identified sites.

5
 https://vivaport.eu

6
 https://www.healthvault.com/

7
 http://phr.carre-project.eu/

8
 http://www.ncbi.nlm.nih.gov/pubmed

9
 https://www.nlm.nih.gov/medlineplus/

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 15 of 43

b) Risk factor data representation, which is a main CARRE information model. Risk factor ontology

describes the causal relationship between one or more risk elements, appearing as source(s) and

another risk element, named as target. More detailed description is provided in D.2.2 Functional

requirements & CARRE information model.

4.2. DSS outputs

4.2.1 Data stored to private RDF

DSS will use all data, stored in RDF repositories, to compute decisions for particular patients. Use cases for
DSS will be firstly prepared by the medical experts in the CARRE consortium and then implemented in DSS
as services, to be stored in private RDF Repository and to be showed in Interactive Visual Interface as a
“DSS alarms”.

Decision support service will provide links to educational resources and variety of health related alerting and
changes identification mechanisms that are suitable to a particular patient’s needs and are based on their
personal data.

In this context, decision-making is a process of creating a new piece of data, previously non-existent, by
using different methods of data modelling and processing to convert and combine pieces of existing
knowledge in order to manage the risk for comorbidities or progression of disease to more severe stages.

4.2.2 Risk Alarms

The basic feature of DSS is the timely identification of major dangerous patient health condition levels, by
means of sending alerting information about medical check-ups, monitoring, increased risk of disease
progression and transition, the need to change diet in patient application.

This is a decision support object, which is the result of analysis and reasoning captured in CARRE
ontologies. A basic feature of DSS is the timely identification of major dangerous patient health condition
levels. Hence the DSS will provide the variables for the visualisation model on how to present given piece of
information using various coloured based techniques – for example presentation of comorbidity threat level.

This refers to the output of the visualisation service. It includes an interactive graphical user interface and
provides the set of pictograms (graphics), text and in the special cases other visual data. Basic feature of
visualisation is rapid identification of major patient health condition levels (using various visualisation
techniques). Table 1 shows some examples of the DSS alerts that are separated into three different health
condition levels.

Table 1. DSS alerts.

Type of
alert

Red alert Yellow alert Green alert

Blood
Pressure

If your SBP is > 180 mmHg
or DBP > 110 mmHg, wait
for 1-3 min and take a
repeat reading.

If your SBP remains > 180
mmHg or DBP > 110
mmHg, call an ambulance

If your BP ≥135 and/or ≥85,
remain checking your BP
twice daily for 7 days.

If your BP remains ≥135
and/or ≥85 during seven
days, contact your family
doctors, you may need the
BP treatment correction.

If your BP ≥135 and/or
≥85, wait for 1-3 min and
take a repeat reading.

If your BP remains ≥135
and/or ≥85 for the second
measurement, make sure:

1. You use your BP
monitor correctly.

2. You took your BP
treatment.

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 16 of 43

Physical
activity

 < 7000 steps/day, you
need to increase your
physical activity.

Body
weight

 If you gain 1kg (2-3
pounds) in a day or >2kg (5
pounds) in 1 week, contact
your familly doctor.

If the swelling of ankles or
feet becomes worse,
contact your family doctor.

Blood
Glucose

If your blood glucose levels
are 20 mmol/L or higher
and doesn't improve
despite following your
doctor's instructions for
treatment, call an
ambulance.

If your blood glucose levels
remain high (>15mmol/l),
contact your family doctor.

Atrial
fibrillation

If you noticed the heart
rhythm disturbance, call an
ambulance.

Heart rate
(HR)

 If your HR> 90 at rest,
contact your family doctor.

4.2.3 Visual interface

One of the basic feature of the DSS is to provide the variables for the visualisation service on how to present
given piece of information in user-friendly form, using various visualization techniques.

The visualisation service is a data-driven visualisation module which provides web-based interactive visual
analysis of data stored in the public and private data repository, such as risk association relationship and
disease progression data. The visualisation component is used by the patient application and the medical
expert application, and communicates with the public/private RDF repository and the DSS in order to provide
integrated interactive visualisation of the data.

The interactive visualisation client-side code will be downloaded online from the server side and run in web
browsers in the patient application and the medical expert application.

One of the features of all visualisation components are scalability and adaptability in order to allow easy
configurability of presented elements (interface) on both mobile devices as well as standard monitor display.

5. DSS components

5.1. Data mining app with rich functions API for Matlab

During early stage of development API for Matlab suite was created with many functions that will help
external scientists use Risk Factor repository for their researches. Thanks to this functionality anyone can

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 17 of 43

explore all triples related to public and private CARRE RDF repositories. Brief of functions are listed in
Table 2 and some indicative functions of them are presented as Matlab code in Annex 2.1.

Table 2. Rich functions API for Matlab.

Function Description

[con] = rConnect(user, pass) Create a structure with access token for
public and private database based on
provided user name and password

[data] = rQuery(con, query) Send specified query in SPARQL format
and return Matlab structure with query
output.

[user_data] = r_userdata(conn) Return user data for logged in by rConnect
function user.

[types] = rGetTypes(con, from) Get all available node types. Parameter
“from” can be: 1 (default)- for getting types
from both private and public repository 2 -
for public only; 3 - for private only

[atributes] = rGetAtributes(con, from) Get all available node attributes.
Parameter “from” can have the same
values as in function above.

[nodes] = rGetNodesByType(con, type) Get all nodes of type “type”.

[nodes] = rGetNodesByAtribue(con, atr) Get all nodes having attribute “atr”.

[atr] = rGetNodeAtributes(con, node) Get all node attributes with corresponding
attribute values of node “node”

[atr] = rGetNodeAtribute(con, node , atr) Get specific value of attribute “atr” of node
“node”.

[obsv] = rGetObservables(con) Get all observables

[riskEl] = rGetRiskElements(con) Get all risk elements

[riskEv] = rGetRiskEvidences(con) Get all risk evidences

[riskFac] = rGetRiskFactors(con) Get all risk factors

[terms] = rGetTerms(con) Get all terms

[d, m] = rGetMeasurement(con, atr) Get measurements specified by “atr”.
Return values are stored in “m” with time
stamp “d”.

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 18 of 43

As example of using this API data mining application (Figure 4) was created. Thanks to this application, user
can explore the entire risk factor database, measurements in private repository, and search for particular
triples.

Figure 4. RDF data explorer Matlab GUI.

Examples of use:

- Find all observables

- Find nodes with particular measurement in private RDF store

- Find which devices are used by patient

5.2. Prototype of reasoning API for personal risk factor model for Matlab

Prototype of reasoning API was created for Matlab suite and partially implemented in DSS web service.
Thanks to this user can calculate personal model for given observables values.

At stage of developing this API only manual reasoning was implemented, due to the fact that repository is
under heavy development and conversion to computer readable format of risk evidences expressions was
done recently. Figure 5 shows the reasoning API in command line interface during its execution in Matlab.
Accordogly, Annex 2.2 presents some indicative Matlab code that is behind of reasing API.

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 19 of 43

Figure 5. Prototype of reasoning API.

5.3. Web infrastructure for DSS

Web service for the DSS (as shown in Figure 6-Figure 9) will be central point of data processing for each
patient. It connects and cooperates with both public and private RDF repository, where the medical
knowledge is stored in public RDF repository and where sensors measurements and the output of DSS
reasoning are store in private RDF repository.

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 20 of 43

Figure 6. Web infrastructure for DSS.

Figure 7. Patients view for medical expert.

Figure 8. Details of the patient view for medical expert.

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 21 of 43

Figure 9. Attaching new patient to medical expert.

DSS web service is based on cloud architecture. That means that DSS doesn’t need to know where the data
is stored and connects to repositories by specified endpoints. The DSS architecture is designed to be
portable across different systems and istallations, so that, for example, a hospital could deploy it in its own
private installation in order to protect its patients privacy. Data storage diversity can be explained as below:

- Risk factor database: external public RDF endpoint

- Personal measurements and DSS output storage: external RDF private repository endpoint

- Medical experts user accounts and data: internal SQL database

Internally service is build using .NET technology. This is high level computer language similar to Java
provided by Microsoft. Thanks to this technology scalable infrastructure can be created. Internally we are
using Visual Studio Community Edition for Web integraded developing environment. As a framework to
create full scalable service ASP.NET technology is used in cooperation with MVC (Model-View-Controller)
methology. The code metrics of DSS web service is presented in Table 3.

Table 3. DSS web service code metrics (C# code).

Project
Maintainability
Index

Cyclomatic
Complexity

Depth of
Inheritance

Class
Coupling

Lines of
Code

CARRE_DSS2 86 517 4 232 1112

CARRE_DSS2.Tests 72 13 1 18 41

6. Conclusion

This document reports on the Decision Support Service (DSS) infrastructure design and development, which
is one of the main CARRE system components, which supports and maintenances of real-time decision
support for patients. This CARRE system component is a personalised service for disease progression
management and is mainly responsible for providing alerts depend on major dangerous patient health
condition levels, advices and personal life-style guidance, based on monitoring of current medical treatment
data in order to manage risks for comorbidities or progression of disease to more severe stages.

This document is a report of activities undertaken in task T.6.1 Development of DSS runtime infrastructure.
This deliverable report focuses on the design and initial implementation of DSS components in order to
provide personalized services to both patient application and medical expert application, which are in the
process of development under currently running tasks in the work pachage WP6: T.6.2 Development of
personalized service for the patient and T.6.3 Development of personalized service for the medical expert.

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 22 of 43

Annex 1

DSS Runtime Infrastructure Software

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 23 of 43

What is CARRE: DSS Runtime Infrastructure?

In CARRE system, Decision support service (DSS) determines the optimal solution, predict future trends
and patterns based on information data analytics and formal reasoning formed on ontologies, which are the
main techniques supported by RDF Linked Data, which then will be the main source of decision
recommendations for CARRE. Together with interactive visualization interface, DSS supports patient
application, by providing user-friendly visualization of the current disease status with appropriate personal
recommendation and advises to his lifestyle.

In CARRE system, the data to Decision support service are retrieved via RESTful APIs web service provided
both by the public and private CARRE data repositories. After receiving the appropriate data the DSS
analyses the data to determine optimal recommendation and solutions for patient. Based on assessment of
inputs from semantic data entry system the DSS should create educational materials based on current
disease state and risks, create personal diet adherence changes and physical activities plan as well as
provide alerting mechanisms and appropriate advises for changes.

All above pieces of information are send to private RDF Repository to be an input data to interactive
visualization interface, by means of text, variables and recommendation to intuitive and user-friendly
visualization in patient application.

Download

API for using CARRE RDF repositories, GUI Explorer of RDF and basic risk factor reasoning scripts:

v0.5 (Released 11 January 2016, Deliverable 6.1)

 Source for Matlab 2014b+ (503 KB): CARRE_DSS_matlab_v0.5.7z (Matlab code)

DSS web service:

v1.0 (Released 11 January 2016, Deliverable 6.1)

 Source for Visual Studio 2015+ (33.9 MB): CARRE_DSS_web_service_visualstudio_v1.0.7z (C# code)

The CARRE DSS Runtime Infrastructure is Open Source

CARRE DSS Runtime Infrastructure is Open Source and can be freely used in Open Source applications
under the terms GNU General Public License (GPL).

Copyright © 2016, CARRE Project, Industrial Research Institute for Automation & Measurements (PIAP),
Poland

https://www.carre-project.eu/download/software/d.6.1_dss_runtime_infrastructure/CARRE_DSS_matlab_v0.5.7z
https://www.carre-project.eu/download/software/d.6.1_dss_runtime_infrastructure/CARRE_DSS_web_service_visualstudio_v1.0.7z
https://www.carre-project.eu/

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 24 of 43

Annex 2

DSS Matlab code examples

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 25 of 43

Annex 2.1: CARRE database API

rGetTypes

function [types] = rGetTypes(con, from)
%RGETTYPES Summary of this function goes here
% Detailed explanation goes here

% FROM - from what repository?
% 1 - all (default): risk factors etc and from user grapf
% 2 - risk factors etc
% 3 - user grapf

if nargin == 1
 from = 1;
end
%http://www.w3.org/2000/01/rdf-schema#type
if from == 1
 query = [...
 'SELECT DISTINCT ?t '...
 'FROM <http://carre.kmi.open.ac.uk/public> '...
 'WHERE { '...
 ' { ?s a ?t . } '...
 ' UNION { ?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?t . }

'...
 ' UNION { ?s <http://www.w3.org/2000/01/rdf-schema#type> ?t . } '...
 '} '];
elseif from == 2
 query = [...
 'SELECT DISTINCT ?t '...
 'WHERE { '...
 ' SERVICE <http://carre.kmi.open.ac.uk:8890/sparql> '...
 ' { ?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?t . } '...
 '} '];
elseif from == 3
 query = [...
 'SELECT DISTINCT ?t '...
 'WHERE { '...
 ' ?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?t .'...
 '} '];
else
 error('Wrong source');
end

[data] = rQuery(con, query);

types = {};
for k = 1:length(data)
 types{k,1} = data{k}.t.value;
end

end

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 26 of 43

rGetNodesByAtribue

function [nodes] = rGetNodesByAtribue(con, atr)
%RGETNODESBYTYPE Summary of this function goes here
% Detailed explanation goes here

% searching for predefinded prefixes

carreSensors = 'http://carre.kmi.open.ac.uk/ontology/sensors.owl#';
carreRisk = 'http://carre.kmi.open.ac.uk/ontology/risk.owl#';

if strcmp(atr(1:2), 's:')
 atr = [carreSensors atr(3:end)];
elseif strcmp(atr(1:2), 'r:')
 atr = [carreRisk atr(3:end)];
end

query = [...
 'SELECT ?n '...
 'FROM <http://carre.kmi.open.ac.uk/public> '...
 'WHERE { '...
 ' ?n <' atr '> ?x . '...
 '} '];

[data] = rQuery(con, query);

nodes = {};
for k = 1:length(data)
 nodes{k,1} = data{k}.n.value;
end

end

rGetNodeAtributes

function [atr] = rGetNodeAtributes(con, node)
%RGETNODESBYTYPE Summary of this function goes here
% Detailed explanation goes here

query = [...
 'SELECT ?a ?v '...
 'FROM <http://carre.kmi.open.ac.uk/public> '...
 'WHERE { '...
 ' <' node '> ?a ?v . '...
 '} '];

[data] = rQuery(con, query);

atr = {};
for k = 1:length(data)
 atr{k,1} = data{k}.a.value;

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 27 of 43

 atr{k,2} = data{k}.v.value;
end

end

rGetAtributes

function [atributes] = rGetAtributes(con, from)
%RGETTYPES Summary of this function goes here
% Detailed explanation goes here

% FROM - from what repository?
% 1 - all (default): risk factors etc and from user grapf
% 2 - risk factors etc
% 3 - user grapf

if nargin == 1
 from = 1;
end

if from == 1
 query = [...
 'SELECT DISTINCT ?a '...
 'FROM <http://carre.kmi.open.ac.uk/public> '...
 'WHERE { '...
 ' ?s ?a ?t . '...
 '} '];
elseif from == 2
 query = [...
 'SELECT DISTINCT ?a '...
 'WHERE { '...
 ' SERVICE <http://carre.kmi.open.ac.uk:8890/sparql> '...
 ' { ?s ?a ?t . } '...
 '} '];
elseif from == 3
 query = [...
 'SELECT DISTINCT ?a '...
 'WHERE { '...
 ' ?s ?a ?t .'...
 '} '];
else
 error('Wrong source');
end

[data] = rQuery(con, query);

atributes = {};
for k = 1:length(data)
 atributes{k,1} = data{k}.a.value;
end

end

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 28 of 43

rGetNodeAtribute

function [atr] = rGetNodeAtribute(con, node , atr)
%RGETNODESBYTYPE Summary of this function goes here
% Detailed explanation goes here

carreSensors = 'http://carre.kmi.open.ac.uk/ontology/sensors.owl#';
carreRisk = 'http://carre.kmi.open.ac.uk/ontology/risk.owl#';

if strcmp(atr(1:2), 's:')
 atr = [carreSensors atr(3:end)];
elseif strcmp(atr(1:2), 'r:')
 atr = [carreRisk atr(3:end)];
end

query = [...
 'SELECT ?v '...
 'FROM <http://carre.kmi.open.ac.uk/public> '...
 'WHERE { '...
 ' { <' node '> <' atr '> ?v . } '...
 '} '];

[data] = rQuery(con, query);

atr = cell(length(data),1);
for k = 1:length(data)
 atr{k,1} = data{k}.v.value;
end

end

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 29 of 43

rGetNodesByType

function [nodes] = rGetNodesByType(con, type)
%RGETNODESBYTYPE Summary of this function goes here
% Detailed explanation goes here

% searching for predefinded prefixes

carreSensors = 'http://carre.kmi.open.ac.uk/ontology/sensors.owl#';
carreRisk = 'http://carre.kmi.open.ac.uk/ontology/risk.owl#';

if strcmp(type(1:2), 's:')
 type = [carreSensors type(3:end)];
elseif strcmp(type(1:2), 'r:')
 type = [carreRisk type(3:end)];
end

% query = [...
% 'SELECT ?n '...
% 'WHERE { '...
% ' {SERVICE <http://carre.kmi.open.ac.uk/sparql> '...
% ' { ?n <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <' type '> .

}} '...
% ' UNION { ?n a <' type '> . } '...
% '} '];

query = [...
 'SELECT DISTINCT ?s '...
 'FROM <http://carre.kmi.open.ac.uk/public> '...
 'WHERE { '...
 ' { ?s a <' type '> . } '...
 ' UNION { ?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <' type '> .

} '...
 ' UNION { ?s <http://www.w3.org/2000/01/rdf-schema#type> <' type '> . }

'...
 '} '];

% ' {SERVICE <http://carre.kmi.open.ac.uk:8890/sparql> '...
% ' {{ ?s a <' type '> . }'...
% ' UNION { ?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <' type

'>}'...
% ' UNION { ?s <http://www.w3.org/2000/01/rdf-schema#type> <' type '>}}}

'...
% '} '];
[data] = rQuery(con, query);

nodes = {};
for k = 1:length(data)
 nodes{k,1} = data{k}.s.value;
end

end

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 30 of 43

rQuery

function [data] = rQuery(con, query)
%R_QUERY Summary of this function goes here
% Detailed explanation goes here

url = [con.endpoint 'query'];

fprintf('\n');
disp('The query is:');
disp(query);

data = urlread(url,'Post', {'sparql', query, 'token',con.token});

disp('Data queried');

try
 data = loadjson(data);
catch
 data = [];
end

disp('Data parsed');

end

rConnect

function [conn] = rConnect(user, pass)
%R_CONNECT Summary of this function goes here
% Detailed explanation goes here

endpoint = 'http://carre.kmi.open.ac.uk/ws';

if ~strcmp(endpoint(end), '/')
 endpoint(end+1) = '/';
end

path = [endpoint 'authenticate'];
text = urlread(path, 'Authentication','Basic', 'Username', user, 'Password',

pass);
conn = loadjson(text);
conn.endpoint = endpoint;

end

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 31 of 43

rGetTerms

function [terms] = rGetTerms(con)

% getting observables nodes from server
[nodes] = rGetNodesByType(con, 'http://www.w3.org/2004/02/skos/core#Concept'

);

%query each observables for atributes
terms = struct([]);
h = waitbar(0,'Wait');
for k = 1:length(nodes)
 waitbar(k/length(nodes), h, sprintf('Wait %d/%d', k, length(nodes)));
 [atr] = rGetNodeAtributes(con, nodes{k});
 if ~isempty(atr)
 terms(end+1).plainTextAtributes = atr;
 terms(end).node = nodes{k};

 %getting label
 ind = find(strcmp(atr(:,1), 'http://www.w3.org/2000/01/rdf-

schema#label'), 1);
 if ~isempty(ind)
 terms(end).label = atr{ind,2};
 end

 end
end
close(h);
%sorting
[~, ind]=sort({terms.label});
terms = terms(ind);

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 32 of 43

Annex 2.2: CARRE Reasoning API

rDataBase

classdef rDataBase < handle
 %RDATABASE Data base of CARRE Project repository.
 % In future all queries should be done via this objectt.

 properties
 RiskFactors;
 RiskEvidences;
 RiskElements;
 Observables;
 Terms;
 Connection;
 end

 methods

 function obj = rDataBase(varargin)
 obj.RiskFactors = {};
 obj.RiskEvidences = {};
 obj.RiskElements = {};
 obj.Observables = {};
 obj.Terms = {};

 if length(varargin) == 1
 %connection structure passed
 obj.Connection = varargin{1};
 elseif length(varargin) == 2
 %create new connection
 obj.Connection = rConnect(varargin{1}, varargin{2});
 else
 %no connection structure
 obj.Connection = [];
 end
 end

 function obj = updateRiskFactors(obj)
 obj.RiskFactors = rGetRiskFactors(obj.Connection);
 end

 function obj = updateRiskEvidences(obj)
 obj.RiskEvidences = rGetRiskEvidences(obj.Connection);
 end

 function obj = updateRiskElements(obj)
 obj.RiskElements = rGetRiskElements(obj.Connection);
 end

 function obj = updateObservables(obj)
 obj.Observables = rGetObservables(obj.Connection);
 end

 function obj = updateTerms(obj)
 obj.Terms = rGetTerms(obj.Connection);

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 33 of 43

 end

 function obj = updateAll(obj)
 disp('updateRiskFactors');
 obj = updateRiskFactors(obj);
 disp('updateRiskEvidences');
 obj = updateRiskEvidences(obj);
 disp('updateRiskElements');
 obj = updateRiskElements(obj);
 disp('updateObservables');
 obj = updateObservables(obj);
 disp('updateTerms');
 obj = updateTerms(obj);
 end

 function saveDataBase(obj, filename)
 RiskFactors = obj.RiskFactors;
 RiskEvidences = obj.RiskEvidences;
 RiskElements = obj.RiskElements;
 Observables = obj.Observables;
 Terms = obj.Terms;
 save(filename, 'RiskFactors', 'RiskEvidences', 'RiskElements',

'Observables', 'Terms');
 end

 function loadDataBase(obj, filename)
 s = load(filename);
 obj.RiskFactors = s.RiskFactors;
 obj.RiskEvidences = s.RiskEvidences;
 obj.RiskElements = s.RiskElements;
 obj.Observables = s.Observables;
 obj.Terms = s.Terms;
 end

 function nodes = searchObservableByName(obj, obsvName, mode)
 %mode:
 % 1 (default) - find, case insersivity
 % 2 - find, case sensivity
 % 3 - exact
 if nargin <= 2
 mode = 1;
 end
 nodes = [];
 switch mode
 case 1
 nodes = {obj.Observables(~cellfun(@isempty,

strfind(lower({obj.Observables.name})', lower(obsvName)))).node}';
 case 2
 nodes = {obj.Observables(~cellfun(@isempty,

strfind({obj.Observables.name}', obsvName))).node}';
 case 3
 nodes = {obj.Observables(strcmp({obj.Observables.name}',

obsvName)).node};
 end

 if length(nodes) == 1
 nodes = cell2mat(nodes);
 end
 end

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 34 of 43

 function obsv = getObservableByNode(obj, node)
 obsv = obj.Observables(strcmp({obj.Observables.node}', node));
 end

 function riskEl = getRiskElementByNode(obj, node)
 riskEl = obj.RiskElements(strcmp({obj.RiskElements.node}', node));
 end

 function riskF = getRiskFactorByNode(obj, node)
 riskF = obj.RiskFactors(strcmp({obj.RiskFactors.node}', node));
 end

 function riskEv = getRiskEvidenceByNode(obj, node)
 riskEv = obj.RiskEvidences(strcmp({obj.RiskEvidences.node}', node));
 end

 end

end

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 35 of 43

rPatient

classdef rPatient < handle
 %RPATIENT Patient object

 properties
 db;
 associatedObservables;
 riskElements;
 riskFactors;
 end

 methods
 function obj = rPatient(database)
 obj.db = database;
 obj.associatedObservables = struct('node', {}, 'val', {});

 %type - 'noObsv', 'missingObsv', 'fullObsv'
 %val - if empty -> lack of answer or missing data
 obj.riskElements = struct('riskElNode', {}, 'knownObsv', {},

'unknownObsv', {}, 'type', {}, 'val', {});

 end

 function obj = setObservable(obj, obsvNode, value)
 %first check existence of observable in local associated obsv
 ind = find(strcmp({obj.associatedObservables.node}', obsvNode), 1);
 if isempty(ind)
 obj.associatedObservables(end+1).node = obsvNode;
 obj.associatedObservables(end).val = {value};
 else
 obj.associatedObservables(ind).node = obsvNode;
 obj.associatedObservables(ind).val = {value};
 end
 end

 function obj = deleteObservable(obj, obsvNode)
 ind = find(strcmp({obj.associatedObservables.node}', obsvNode), 1);
 if ~isempty(ind)
 obj.associatedObservables(ind) = [];
 end
 end

 function printRaport(obj, mode)
 % mode = {'full', 'reduced'};
 if nargin == 1
 mode = 'reduced';
 end
 if ~isempty(obj.associatedObservables)
 fprintf('\n--- Associated observables --- \n\n');
 for k = 1:length(obj.associatedObservables)
 n =

obj.db.getObservableByNode(obj.associatedObservables(k).node);
 name = n.name;
 val = obj.associatedObservables(k).val{1};
 if ~ischar(val)
 val = num2str(val);
 end

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 36 of 43

 fprintf('%d: %s = %s\n', k, name, val);
 end
 end

 if ~isempty(obj.riskElements)
 fprintf('\n--- Risk elements raport --- \n\n');
 for k = 1:length(obj.riskElements)

 [type] =

obj.statusOfRiskElement(obj.riskElements(k).riskElNode);
 if strcmp(type, 'noObsv') && ~strcmp(mode, 'full')
 continue;
 end
 obj.printRiskElement(obj.riskElements(k).riskElNode);
 fprintf('\n');
 end
 end

 if ~isempty(obj.riskFactors)
 fprintf('--- Risk factors raport --- \n\n');
 for k = 1:length(obj.riskFactors)
 obj.printRiskFactor(obj.riskFactors(k).rfNode);
 end
 end

 end

 function printRiskElement(obj, node)
 rInd = find(strcmp({obj.riskElements(:).riskElNode}, node));
 rElement = obj.riskElements(rInd);
 if isempty(rElement)
 return;
 end
 r = obj.db.getRiskElementByNode(rElement.riskElNode);
 rName = r.name;
 rCondition = r.condition;
 if isempty(rCondition)
 rCondition = 'NONE';
 end
 rCondition = strrep(rCondition,sprintf('\n'),' ');
 val = rElement.val;
 if isempty(val)
 val = 'NONE';
 end

 [type, revelant] =

obj.statusOfRiskElement(rElement.riskElNode);

 fprintf('Risk element nr %d: %s \n val:\t\t\t%s\n

condition:\t%s\n type:\t\t\t%s\n revelant: \t%s\n\n', rInd, rName, val,

rCondition, type, num2str(revelant));

 if ~isempty(rElement.Obsv)
 disp(' Last observables state:');
 for k2 = 1:size(rElement.Obsv, 1)
 obs =

obj.db.getObservableByNode(rElement.Obsv{k2,1});
 oName = obs.name;

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 37 of 43

 oVal = rElement.Obsv{k2,2};
 if isempty(oVal)
 oVal = 'UNKNOWN';
 elseif ~ischar(oVal)
 oVal = num2str(oVal);
 end

 if revelant(k2)
 revStr = 'up to date';
 else
 revStr = 'out of date';
 end

 fprintf(' %d: %s = %s (%s)\n', k2, oName, oVal,

revStr);
 end
 end
 end

 function obj = processRiskFactors(obj)
 obj.riskFactors = struct('rfNode', {}, 'rElements', {},

'rEvidences', {}, 'outputRatio', {});
 for k = 1:length(obj.db.RiskFactors)
 % check risk elements
 condition = true;
 rElements = {};
 for k2 = 1:length(obj.db.RiskFactors(k).source)
 ind = find(strcmp({obj.riskElements(:).riskElNode},

obj.db.RiskFactors(k).source{k2}), 1);
 if isempty(ind) || strcmp(obj.riskElements(ind).val,

'_noanswer') || strcmp(obj.riskElements(ind).val, '_noInfo')
 condition = false;
 end
 rElements{k2} = obj.riskElements(ind).riskElNode;
 end

 if condition
 % add risk factor to local db
 obj.riskFactors(end+1).rfNode = obj.db.RiskFactors(k).node;
 obj.riskFactors(end).rElements = rElements;
 obj.riskFactors(end).outputRatio = NaN;

 obj.riskFactors(end).rEvidences = struct('rEvNode', {},

'observables', {}, 'type', {}, 'val', {});
 for k2 = 1:length(obj.db.RiskFactors(k).evidence)
 rEvNode = obj.db.RiskFactors(k).evidence(k2);
 obj.riskFactors(end).rEvidences(k2).rEvNode = rEvNode;
 obj.riskFactors(end).rEvidences(k2).val = NaN;
 rEv =

obj.db.getRiskEvidenceByNode(rEvNode);%obj.db.RiskEvidences(strcmp({obj.db.RiskE

vidences(:).node}, rEvNode));
 rEvObs = {};
 for k3 = 1:length(rEv.obsv)
 ind =

find(strcmp({obj.associatedObservables(:).node}, rEv.obsv(k3)));
 if any(ind)
 rEvObs{k3,1} = rEv.obsv{k3};
 rEvObs{k3,2} =

obj.associatedObservables(ind).val{1};

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 38 of 43

 else
 rEvObs{k3,1} = rEv.obsv{k3};
 rEvObs{k3,2} = [];
 end
 end
 obj.riskFactors(end).rEvidences(k2).observables =

rEvObs;
 [type] = statusOfRiskEvidence(obj,

obj.riskFactors(end).rEvidences(k2));
 obj.riskFactors(end).rEvidences(k2).type = type;
 end

 end

 end

 end

 function printRiskFactor(obj, node)
 rfInd = find(strcmp({obj.riskFactors(:).rfNode}, node));
 rFacL = obj.riskFactors(rfInd);
 if isempty(rFacL)
 return;
 end
 rFacDB = obj.db.getRiskFactorByNode(rFacL.rfNode);
 rName = rFacDB.name;
 rVal = rFacL.outputRatio;
 rTargetName = obj.db.getRiskElementByNode(rFacDB.target).name;
 rSourceNamesAndVals = {};
 for k = 1:length(rFacL.rElements)
 rSourceNamesAndVals{k,1} =

obj.db.getRiskElementByNode(rFacL.rElements{k}).name;
 rSourceNamesAndVals{k,2} =

obj.riskElements(strcmp({obj.riskElements(:).riskElNode},

rFacL.rElements{k})).val;
 end
 fprintf('Risk element nr %d: %s\n', rfInd, rName);
 fprintf(' Target:\t%s\n', rTargetName);
 fprintf(' Ratio:\t%.2f\n', rVal);
 fprintf(' Sources:\t\n');
 for k = 1:size(rSourceNamesAndVals,1)
 fprintf(' %d: %s = %s\n', k, rSourceNamesAndVals{k,1},

rSourceNamesAndVals{k,2});
 end

 fprintf('\n');
 for k = 1:length(rFacL.rEvidences)
 obj.printRiskEvidence(rFacL.rEvidences(k), k);
 fprintf('\n');
 end
 end

 function printRiskEvidence(obj, rEvidence, num)

 if nargin == 3
 numStr = sprintf(' nr %d', num);
 else

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 39 of 43

 numStr = '';
 end

 rEvNode = rEvidence.rEvNode;
 rEv = obj.db.getRiskEvidenceByNode(rEvNode);
 [type, revelant] = statusOfRiskEvidence(obj, rEvidence);

 expression = rEv.expression;
 if isempty(expression)
 expression = 'NONE';
 end
 expression = strrep(expression,sprintf('\n'),' ');

 val = rEvidence.val;

 fprintf(' Risk evidence%s:\n type:\t\t\t%s\n risk

type:\t\t%s\n risk ratio:\t\t[%.2f,%.2f,%.2f]\n expression:\t\t%s\n

val:\t\t\t%d\n', ...
 numStr, type, rEv.radioType, rEv.ratio(1), rEv.ratio(2),

rEv.ratio(3), expression, val);
 if ~isempty(rEvidence.observables)
 disp(' Last observables state:');
 for k2 = 1:size(rEvidence.observables, 1)
 obs =

obj.db.getObservableByNode(rEvidence.observables{k2,1});
 oName = obs.name;
 oVal = rEvidence.observables{k2,2};
 if isempty(oVal)
 oVal = 'UNKNOWN';
 elseif ~ischar(oVal)
 oVal = num2str(oVal);
 end

 if revelant(k2)
 revStr = 'up to date';
 else
 revStr = 'out of date';
 end

 fprintf(' %d: %s = %s (%s)\n', k2, oName, oVal,

revStr);
 end
 end

 end

 function [type, revelant] = statusOfRiskEvidence(obj, rEvidence)
 emptyObsv = 0;
 numOfObsv = size(rEvidence.observables,1);
 revelant = [];
 for k = 1:numOfObsv

 oVal =

obj.associatedObservables(strcmp({obj.associatedObservables(:).node},

rEvidence.observables{k,1}));

 if ~isempty(oVal)
 oVal = oVal.val{1};

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 40 of 43

 end

 if isempty(rEvidence.observables{k,2})
 emptyObsv = emptyObsv+1;
 revelant(k) = isempty(oVal);
 else
 if isempty(oVal)
 revelant(k) = false;
 elseif ischar(oVal)
 revelant(k) = strcmp(oVal, rEvidence.observables{k,2});
 else
 revelant(k) = (oVal == rEvidence.observables{k,2});
 end
 end
 end

 if emptyObsv == 0
 type = 'fullObsv';
 elseif emptyObsv == numOfObsv
 type = 'noObsv';
 else
 type = 'partObsv';
 end

 end

 function obj = processRiskElements(obj)
 % clear data - for temporary propose
 obj.riskElements = struct('riskElNode', {}, 'Obsv', {}, 'val', {});
 for k = 1 : length(obj.db.RiskElements)
 obj.riskElements(k).riskElNode = obj.db.RiskElements(k).node;
 for k2 = 1:length(obj.db.RiskElements(k).obsv)
 if any(strcmp({obj.associatedObservables(:).node},

obj.db.RiskElements(k).obsv(k2)))
 obj.riskElements(k).Obsv{end+1,1} =

obj.db.RiskElements(k).obsv{k2};
 oVal =

obj.associatedObservables(strcmp({obj.associatedObservables(:).node},

obj.riskElements(k).Obsv{end,1})).val{1};
 obj.riskElements(k).Obsv{end ,2} = oVal;
 else
 obj.riskElements(k).Obsv{end+1,1} =

obj.db.RiskElements(k).obsv{k2};
 obj.riskElements(k).Obsv{end ,2} = [];
 end
 end
 obj.riskElements(k).val = '_noanswer';
 end
 end

 function answerQuestions(obj)
 % process Risk Elements
 obj.updateRiskElements;
 fprintf('Answer questions.\nType nothing if some information to

answer the question are not provided.\nType ''exit'' to stop answering questions

and return to command line\n');

 for k = 1:length(obj.riskElements)

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 41 of 43

 [type, revelant] =

obj.statusOfRiskElement(obj.riskElements(k).riskElNode);
 if strcmp(type, 'noObsv')
 continue;
 end

 if ~strcmp(obj.riskElements(k).val, '_noanswer') &&

all(revelant)
 continue;
 end

 fprintf('\n');
 obj.printRiskElement(obj.riskElements(k).riskElNode);
 fprintf('\n');
 an = input('Type value of risk element expression: ', 's');
 if isempty(an)
 if strcmp(obj.riskElements(k).val, '_noanswer')
 obj.riskElements(k).val = '_noInfo';
 end
 elseif strcmpi(an, 'exit')
 return;
 else
 obj.riskElements(k).val = an;
 end
 end

 %process risk factors
 obj.updateRiskFactors;
 for k1 = 1:length(obj.riskFactors)
 for k2 = 1:length(obj.riskFactors(k1).rEvidences)
 if isnan(obj.riskFactors(k1).rEvidences(k2).val)

obj.printRiskEvidence(obj.riskFactors(k1).rEvidences(k2));
 an = input('Type value of risk factor (0,1,NaN): ');
 obj.riskFactors(k1).rEvidences(k2).val = an;
 fprintf('\n\n');
 end
 end
 end
 obj.updateRiskFactors;
 end

 function [type, revelant] = statusOfRiskElement(obj, node)
 rElement = obj.riskElements(strcmp({obj.riskElements(:).riskElNode},

node));
 revelant = [];
 emptyObsv = 0;
 numOfObsv = size(rElement.Obsv,1);
 for k = 1:numOfObsv

 oVal =

obj.associatedObservables(strcmp({obj.associatedObservables(:).node},

rElement.Obsv{k,1}));

 if ~isempty(oVal)
 oVal = oVal.val{1};
 end

 if isempty(rElement.Obsv{k,2})

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 42 of 43

 emptyObsv = emptyObsv+1;
 revelant(k) = isempty(oVal);
 else
 if isempty(oVal)
 revelant(k) = false;
 elseif ischar(oVal)
 revelant(k) = strcmp(oVal, rElement.Obsv{k,2});
 else
 revelant(k) = (oVal == rElement.Obsv{k,2});
 end
 end
 end

 if emptyObsv == 0
 type = 'fullObsv';
 elseif emptyObsv == numOfObsv
 type = 'noObsv';
 else
 type = 'partObsv';
 end

 end

 function updateRiskElements(obj)
 %check status of revelacne of assiosiated observables and those
 %in risk elements

 for k = 1:length(obj.riskElements)
 [~, revelant] =

obj.statusOfRiskElement(obj.riskElements(k).riskElNode);
 if ~any(revelant)
 obj.riskElements(k).val = '_noanswer';
 % update assiociated observables values
 for k2 = 1:size(obj.riskElements(k).Obsv,1)
 obj.riskElements(k).Obsv{k2,2} =

obj.associatedObservables(strcmp({obj.associatedObservables.node},

obj.riskElements(k).Obsv{k2,1})).val{1};
 end
 end
 end
 end

 function updateRiskFactors(obj)
 for k1 = 1:length(obj.riskFactors)
 obj.riskFactors(k1).outputRatio = NaN;
 for k2 = 1:length(obj.riskFactors(k1).rEvidences)
 [~, revelant] =

obj.statusOfRiskEvidence(obj.riskFactors(k1).rEvidences(k2));
 if ~isempty(revelant) && ~any(revelant)
 obj.riskFactors(k1).rEvidences(k2).val = NaN;
 % update assiociated observables values
 for k3 =

1:size(obj.riskFactors(k1).rEvidences(k2).observables,1)
 obj.riskFactors(k1).rEvidences(k2).observables{k3,2}

= obj.associatedObservables(strcmp({obj.associatedObservables.node},

obj.riskFactors(k1).rEvidences(k2).observables{k3,1})).val{1};
 end
 end

 D.6.1. DSS Runtime Infrastructure

FP7-ICT-61140 page 43 of 43

 if ~isnan(obj.riskFactors(k1).rEvidences(k2).val) &&

(obj.riskFactors(k1).rEvidences(k2).val == 1)
 ratio =

obj.db.getRiskEvidenceByNode(obj.riskFactors(k1).rEvidences(k2).rEvNode).ratio(2

);
 if isnan(obj.riskFactors(k1).outputRatio)
 obj.riskFactors(k1).outputRatio = ratio;
 else
 obj.riskFactors(k1).outputRatio = max(ratio,

obj.riskFactors(k1).outputRatio);
 end
 end
 end
 end
 end

 function rebuild(obj)
 % reprocess all data, answer questions etc
 obj.processRiskElements;
 obj.answerQuestions;
 obj.processRiskFactors;
 obj.answerQuestions;
 end

 function savePatient(obj, file)
 associatedObservables = obj.associatedObservables;
 riskElements = obj.riskElements;
 riskFactors = obj.riskFactors;
 save(file, 'associatedObservables', 'riskElements', 'riskFactors');
 end

 function loadPatient(obj, file)
 s = load(file);
 obj.associatedObservables = s.associatedObservables;
 obj.riskElements = s.riskElements;
 obj.riskFactors = s.riskFactors;
 end

 function riskFactorRaport(obj)
 for k = 1:length(obj.riskFactors)
 if ~isnan(obj.riskFactors(k).outputRatio)
 rFacDB =

obj.db.getRiskFactorByNode(obj.riskFactors(k).rfNode);
 rVal = obj.riskFactors(k).outputRatio;
 rTargetName =

obj.db.getRiskElementByNode(rFacDB.target).name;
 fprintf('Possibility of %s with risk ratio %.2f\n',

rTargetName, rVal);
 end
 end
 end

 end

end

