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Abstract—The purpose of this study was the devel-
opment and investigation of the automatic Premature
Ventricular Contraction (PVC) detection and classi-
fication method using Photoplethysmographic (PPG)
signals. The main issue of using PPG for arrhythmia
detection are the artefacts which may be falsely
detected as an arrhythmic pulses. The method is based
on 6 PPG features, obtained in 12 s analysis frame.
The features are peak-to-peak intervals and PPG
power derived features. The fundamental frequency
of the PPG was used for feature extraction and
normalization. The Artificial Neural Network with
back-propagation was used for the PPG pulse clas-
sification. The PPG signals from Physionet MIMIC
II and MIMIC databases were used for algorithm
training and testing. PPG were annotated by referring
to synchronously registered ECG signals. The method
was evaluated by calculating sensitivity and specificity
which for the two main PVC types are 96,05 / 95,37 %
and 99,85 / 99,80 %, respectively. The study results
suggest that PPG can be used for the reliable PVC
detection.

I. INTRODUCTION

Premature Ventricular Contractions (PVCs) are
one of the most common heart rate irregularities.
The PVCs are the early heart beats that originate in
the ventricles and are initiated not by the sinoatrial
node but by the secondary pacemakers - the ectopic
focuses. PVCs may occur in healthy hearts with
no significant impact on the overall health. Early
studies suggested that in absence of structural heart
diseases, the PVCs could be considered benign [1].

However, more recent studies deny benignity of the
PVCs and link them to various health abnormalities
and reveal their prognostic value [2]. In addition,
study [3] shows that the PVCs are the predictors of
the cardiac death even in men without known heart
diseases. Increasing frequency of occurring PVCs
was associated with the heart failure [9]. Study
[4] concluded that frequent PVCs during physical
exercise increase the risk of death from cardiovas-
cular causes. Study [5] showed that frequent PVCs
during the recovery is an even better risk predictor.
PVCs are also found to trigger more serious heart
arrhythmias such as atrial fibrillation (AF) [6], [7].
Due to electrolyte (e.g. calcium) imbalance, ventric-
ular extrasystoles may occur during chronic kidney
disease [8] which is closely related to cardiorenal
syndrome.

The PVCs are relatively easily detected in the
ECG signals by their distinctive shape. Their
frequency and morphology is evaluated by using
the Holter monitors. However, ECG electrodes
attached to the patients chest may cause discom-
fort, limit the freedom of movement or increase
the feeling of the unhealthiness, especially after
wearing the device for as long as 24 h. Cheaper
and more convenient alternative to screening with
the Holter monitor might be the device based on
the photoplethysmography (PPG).

The PPG is a non-invasive technique for the
hemodynamic change monitoring in the tissue vas-



cular system by illumination with the light of the
certain wavelength. In contrast to the ECG, the
PPG sensor is far more comfortable and conve-
nient to use as it can be attached to the finger [10],
integrated in to the ear phones [11] and the forehead
band [12] or even used as the wrist sensor [13].

Previously, there were several attempts to detect
premature beats in the PPG signals [10], [12], [14].
These methods exploit temporal and amplitude fea-
tures extracted from the PPG signal morphology or
complemented by the continuous wavelet transform.

In this study, the PVC detection and classification
method based on the temporal and power (variance)
derived features of the PPG is presented. The de-
tected PPG pulses are classified with the Artificial
Neural Network (ANN).

II. METHOD

A. Feature extraction

The scheme of the PVC detection and classifica-
tion method is presented in figure 1. The method
exploits temporal (peak-to-peak intervals) and sig-
nal power derived features (variance ratios) for the
PVC detection and classification.

In order to reduce high frequency noises and base
line wandering, the PPG signal is filtered with the
low-pass (LPF ) and the high-pass (HPF 1) finite
impulse response (FIR) filters of 5 Hz and 0.4 Hz
cut-off frequencies with the filter orders of 400 and
2000, respectively.

Next, feature extraction in 12 s analysis frame is
performed. First, the fundamental frequency (FF )
of the preprocessed PPG signal is estimated. The
FF is used in the second high-pass (HPF 2) FIR
filter with a variable cut-off frequency. The purpose
of this filter is to extract fundamental frequency
component of the PPG signal. The output of the
HPF 2 is passed to the reference input of the
Recursive Least Squares (RLS) adaptive filter. The
adaptive filter removes the fundamental frequency
component from the PPG signal, which in turn
reveals the extrasistolic episodes by attenuating
normal PPG pulses. The idea behind this is that
extrasystolic pulses are of lower frequencies than
normal beats, thus by removing fundamental fre-

quency component, only the extasystolic and noisy
components of the PPG signal are left.

In the next step, positive peaks in the prepro-
cessed PPG signal are detected by threshold cross-
ing technique and peak-to-peak intervals (PPI) are
calculated. The PPI’s are normalized according
to the estimated FF . Further, the variance ratios
(V Rs) of the preprocessed PPG signal and PPG
signal with the subtracted fundamental frequency
component PPG af are calculated by formula (1):

V Rj =

PPIj∑
i=1

(
PPG af

i − PPG af
)2

PPIj∑
i=1

(
PPG i − PPG

)2 (1)

where V R - variance ratio, PPG af - PPG
filtered with an adaptive filter, PPG - PPG filtered
with LPF and HPF 1, PPG af - mean value of
PPG af , PPG - mean value of PPG, PPI -
peak-to-peak interval length in samples, i - sample
number, j - PPI interval number.

The V Rs are calculated in the PPI interval win-
dow of the current PPG pulse. The variance ratio
normalizes PVC episodes and minimizes amplitude
of the normal beats: the power of PPG af at PVC
episodes is high and the power of the PPG af at
normal beats due to removed fundamental compo-
nent is small.

The fundamental frequency (FF ) of the PPG
signal is estimated by applying series of operations.
First, in order to smooth the PPG, it is filtered with
the moving average filter. Next, the PPG clipping
is performed for the purpose of high amplitude
impulse noise influence reduction. Further, the 1st

derivative of the clipped PPG signal is calculated.
The 1st derivative reveals higher frequency compo-
nents of the PPG signal where the fundamental
component is of the highest energy. Finally, the
FF is estimated by the highest amplitude in the
power spectral density (PSD) function. Outliers
are inevitable, thus in order to remove them, the
frequency array is filtered with the 5th order median
filter.

B. Classification

The ANN with one hidden layer was used for
the PPG pulse classification into 3 major classes:
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Figure 1: Scheme of the proposed method
PV C 1, PV C 2 (refer to figure 3) and NORM .
The classifier scheme is presented in the figure 2. In
all, 6 PPG feature were used: 3 successive PPIs
and 3 successive variance ratios.
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Figure 2: The PPG pulse classification scheme

III. DATA

A total of 18 PPG signals from the PhysioNet
[15] MIMIC II v3 part 0 database were used for
training and 25 PPG signals from MIMIC database
were used for algorithm testing. The PPG signals
were manually annotated by using synchronously
registered ECG signals as the reference. Both the
PPG and the ECG signals were resampled to
500 Hz. The PPG signals used in this study contain
various types of extrasystolic beats, artefacts or
absolutely normal beats. Two major types of the
PVC pulses may be observed in the PPG (Fig. 3):

PVC 1

PVC 2

PPI 1 PPI 2 PPI 3

PPI 1 PPI 2 PPI 3

NORM NORM

NORM NORMNORM NORM NORM

NORM NORM NORM NORM

~1.5..2.1 x PPI 1/3

><

Figure 3: Types of PVCs in the PPG signals: a)
with premature pulse PV C 2 b) without premature
pulse PV C 1

Criterias for discarding signals were the absence
of the ECG or PPG signals, severely corrupted
signals and various pathologies which would not let

correct annotation of the PPG signals. The signals
used for testing are shown in the table I:

Table I: Data

Signal PV C 1# PV C 2# Signal PV C 1# PV C 2#
039m 0 0 404m 0 196
041m 0 0 408m 9 2
055m 1 0 439m 12 0
211m 0 0 442m 1249 364
212m 154 0 444m 7 9
218m 0 0 449m 5 1
221m 11 0 466m 3 4
224m 0 0 471m 1 0
225m 0 9 474m 0 0
230m 0 4 482m 48 30
237m 29 5 484m 74 9
252m 0 0 485m 751 15
253m 0 0
Total: 195 18 Total: 2159 630

IV. RESULTS

The results expressed in specificity (Spe), sen-
sitivity (Sen), the overall accuracy (Acc) and the
Matthews correlation coefficient (MCC) are pre-
sented in table II:

Table II: The results

Class ⇒ NORM PV C 1 PV C 2

Sen 99,66 % 96,05 % 95,37 %

Spe 96,57 % 99,85 % 99,80 %

Acc 99,62 % 99,81 % 99,79 %

MCC 86,75 % 90,88 % 73,76 %

Table III: Confusion matrix

Class ⇒ NORM PV C 1 PV C 2

NORM 234982 74 29

PV C 1 362 2261 1

PV C 2 444 19 618

V. DISCUSSION AND CONCLUSIONS

The presented PVC detection method is capable
of detecting not only single premature ventricular



contractions but also bigeminy (where every second
beat is extrasystolic). The PPG pulse detection and
classification effectiveness mainly depends on the
precision of the fundamental frequency estimation
which in turn depends on the quality of the PPG
signals. The presented algorithm is capable of sep-
arating artefacts from normal and premature beats
thus decreasing false alarms. These qualities are vi-
tal for the application in the wearable systems. The
ANN was chosen due to its universality and ability
to approximate linear an non-linear functions.

Our first attempt to detect extrasystoles in the
PPG signals was carried out in the study [16],
however, signal database was relatively small (9
signals). It was also discovered, that the previous
algorithm had limitations in detecting successive
extrasystolic pulses e.g. bigeminy (every second
beat is extrasystolic).

The limitation of present study is that signal
annotations were not performed by the doctors. It
should also be noted that the late and interpolated
extrasystoles in the PPG can not be detected,
because hemodynamic changes are insignificant and
pauses are very short or absent, however these
extrasystoles are quiet rare [17].

The aim of the further research is to develop
robust arrhythmia (e.g. atrial fibrillation) detection
method and adapt it for the use in the embedded
wearable PPG based screening system.
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