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Abstract

This study describes an atrial fibrillation (AF) detector whose structure is well-adapted both to detection of subclinical AF episodes
and to implementation in a battery-powered device for use in continuous long-term monitoring applications. A key aspect for
achieving these two properties is the use of an 8-beat sliding window, which thus is much shorter than the 128-beat window used
in most existing AF detectors. The building blocks of the proposed detector include ectopic beat filtering, bigeminal suppression,
characterization of RR interval irregularity, and signal fusion. With one design parameter, the performance can be tuned to put more
emphasis on avoiding false alarms due to non-AF arrhythmias or more emphasis on detecting brief AF episodes. Despite its very
simple structure, the results show that the detector performs better on the MIT–BIH Atrial Fibrillation database than do existing
detectors, with high sensitivity and specificity (97.1% and 98.3%, respectively). The detector can be implemented with just a few
arithmetical operations and does not require a large memory buffer thanks to the short window.
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1. Introduction

In recent years, atrial fibrillation (AF) monitoring has been
performed in connection with cryptogenic ischemic stroke [1],
interventional ablation procedures [2], and pharmacological treat-
ment [3], providing information for evaluating the efficacy of
different treatment strategies. Ultimately, continuous long-term
monitoring, lasting from several weeks to months, should be
performed so that all episodes of paroxysmal AF are detected,
including the very brief ones, and, therefore, it is essential that
detection techniques are developed subject to the constraint that
the implementation can be made extremely energy efficient.

It has been shown that the success rate of catheter abla-
tion is highly overestimated when determined from 24-h Holter
recordings [2]. This issue can be addressed by considerably ex-
tending the monitoring period so that the likelihood of detect-
ing AF episodes increases. However, existing techniques for
continuous long-term monitoring reduce the patient’s quality of
life and often lead to premature termination of the data acqui-
sition [4]. While patient comfort can be improved by shrinking
the size of the monitoring device, using a smaller battery, large
battery capacity is nonetheless needed in this type of monitor-
ing since battery replacement or recharging should be avoided.

Many different approaches to AF detection have been pro-
posed in recent years: the majority of the detectors take the
RR interval series as the starting point [5, 6, 7, 8], whereas a
few detectors also involve information on P wave and f wave
morphology [9, 10, 11]. However, the latter type of detector
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is associated with dramatically higher computational demands
than are the RR-based detectors, making them unsuitable for
implementation in a low power device. Somewhat surprisingly,
it has been demonstrated that increased complexity through in-
clusion of morphologic analysis does not necessarily translate
to performance better than that achieved by an RR-based AF
detector [9, 10].

Crucial issues to be solved in RR-based AF detection are
1. improved detection rate of brief (“occult”) episodes of parox-
ysmal AF (ă30 s) and 2. reduction of the false alarm rate due to
ectopic beats and other irregular types of rhythm. While almost
all AF detectors require at least a 30-s episode for correct detec-
tion, recent studies have suggested that episodes as short as 5 s
are of interest to detect since they are associated with increased
risk of stroke [12, 1, 13]. Therefore, reliable detection of brief
episodes is essential so that an accurate evaluation of AF burden
can be produced when studying thromboembolic risk.

In this paper, we propose a novel RR-based AF detector
with a low complexity structure that can be implemented with
few arithmetical operations. The detector involves blocks for
preprocessing, bigeminal suppression, characterization of RR
irregularity, signal fusion, and threshold detection; both off- and
online versions of the detector are presented (Sec. 2). Using
annotated ECG databases as well as simulated signals, both de-
scribed in Sec. 3, detector performance is investigated in Sec. 4
as a function of different design parameters as well as a function
of AF episode length. The resulting performance is compared
to that achieved by other AF detectors in the literature.
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Figure 1: Block diagram of the proposed AF detector.

2. Methods

The proposed detector is based on the observation that AF
episodes have increased RR irregularity and usually are associ-
ated with increased heart rate. A block diagram of the detector
is shown in Fig. 1, where each of the procesing blocks is de-
scribed in the following.

2.1. Preprocessing

The occurrence of sporadic ectopic beats can be problem-
atic when short time RR series are analyzed and, therefore, it is
desirable to introduce techniques which can handle such situa-
tions. Preliminary tests showed that the simple 3-point median
filter is useful for reducing the influence of ectopic beats in the
RR series. This filter is defined by

rmpnq “ mediantrpn ´ 1q, rpnq, rpn ` 1qu, (1)

where rpnq denotes the length of the n:th RR interval (whose
unit is in seconds). Median filtering is also useful for reject-
ing outlier RR intervals due to, e.g., missed QRS complexes.
Higher-order median filters were found to be less useful since
they smooth AF episodes to such a degree that episodes with
low RR irregularity remain undetected.

Since heart rate usually increases during AF episodes, an
estimate of the mean RR interval has to be determined, and
employed as a feature in the AF detector, cf. [7, 14]. Here,
the traditional ensemble averager is replaced by the exponential
averager to better track the “trend” in the RR interval series.
The exponential averager is defined by [15]

rtpnq “ rtpn ´ 1q ` αprpnq ´ rtpn ´ 1qq, (2)

where α (0 ă α ă 1) determines the degree of smoothing, i.e.,
the lowpass cut-off frequency. Since the exponential averager
in (3) has nonlinear phase, forward–backward filtering is per-
formed to achieve linear (null) phase.

2.2. RR interval irregularity

In a sliding detection window of length N, located at time n,
the number of all pairwise RR interval combinations differing

more than γ seconds is determined, and normalized with its
maximum value NpN ´ 1q{2, i.e.,

Mpnq “
2

NpN ´ 1q

N´1
ÿ

j“0

N
ÿ

k“ j`1

Hp|rpn´ jq´rpn´kq|´γq, (3)

where Hp¨q is the Heaviside step function and 0 ď Mpnq ď 1.
It is noted that Mpnq is partially based on the same principle as
is sample entropy estimation [7].

The primary feature of RR irregularity is provided by the
ratio between a smoothed version of Mpnq and the RR interval
trend rtpnq in (2),

Itpnq “
Mtpnq

rtpnq
, (4)

where Mtpnq is obtained by exponential averaging of Mpnq. The
division by rtpnq is motivated by the wish to emphasize RR ir-
regularity at higher heart rates. It should be noted that Itpnq

is close to 0 for regular rhythms since the difference between
pairs of RR intervals is usually smaller than a properly chosen
γ, whereas Itpnq approaches 1 during AF, see the examples in
Fig. 2.

2.3. Bigeminy suppression

It is well-known that bigeminy can be incorrectly interpreted
as AF when the detection is RR-based [14]. In order to ad-
dress this issue, we introduce another measure of RR irregu-
larity, complementary to Itpnq and with the property of being
essentially indifferent to the presence of bigeminy. The mea-
sure is defined by

Bpnq “

¨

˚

˚

˝

N´1
ř

j“0
rmpn ´ jq

N´1
ř

j“0
rpn ´ jq

´ 1

˛

‹

‹

‚

2

, (5)

where N is an even-valued integer. Similar to rtpnq and Mtpnq,
Btpnq results from exponential averaging of Bpnq. For bigeminy
as well as for regular rhythms, the ratio in (5) is approximately
1 since rmpnq and rpnq are similar, and thus Btpnq is approxi-
mately 0, see Fig. 2(b). On the other hand, for AF the variation
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Figure 2: The output of each building block of the proposed detector is illus-
trated for (a) an AF episode surrounded by ectopic beats and (b) bigeminy.
Atrial fibrillation is detected whenever Opnq exceeds the threshold η, then dis-
played by a thicker line.

in rmpnq is lower than that in rpnq because of the median filter-
ing, and thus Btpnq will increase so that it indicates irregularity.
The squaring operation in (5) improves the differentiation of AF
from other rhythms.

2.4. Signal fusion and detection
Simple signal fusion is employed to produce the decision

function Opnq: Opnq is identical to Btpnq, unless Btpnq exceeds
a fixed threshold δ when, instead, it becomes identical to Itpnq,
i.e.,

Opnq “

"

Itpnq, Btpnq ě δ
Btpnq, Btpnq ă δ.

(6)

Figure 2 illustrates Opnq as well as rmpnq, rtpnq, Itpnq, and
Btpnq for an AF episode surrounded by ectopic beats and si-
nus rhythm with an episode of bigeminy. It is obvious from
Fig. 2(a) that median filtering removes the RR intervals related
to ectopic beats so that the AF episode can be correctly detected
and false alarms avoided. Another feature of the detector is il-
lustrated in Fig. 2(b) where Opnq is shown to be unaffected by
the occurrence of bigeminy and, consequently, not misclassified
as AF. Although Itpnq increases during bigeminy, Opnq remains
small since Btpnq remains below δ, cf. (6). Similarly, Btpnq is
close to 0 during sinus rhythm, and therefore Opnq is also close
to 0. Atrial fibrillation is detected whenever Opnq exceeds the
fixed threshold η.

The number of mathematical operations needed to imple-
ment the algorithm is presented in Table 1, showing that the de-
tector requires very few multiplications/divisions for processing

a single RR interval. Of the 8 multiplications, 6 are required for
implementation of the forward–backward exponential averager
due to multiplication with α, If needed, the α-related multipli-
cations can be approximated by additions and a shift, see Dis-
cussion.

Table 1: The number of arithmetic operations required per RR interval.

Multiplications Divisions Additions/subtractions
8 2 45

2.5. Online atrial fibrillation detection

Since forward–backward filtering requires that the time-reversed
signal is processed, this type of filtering is best suited for offline
processing. On the other hand, for online processing, forward–
backward filtering with the exponential averager in (2) is re-
placed by forward filtering and a second-order exponential av-
erager, defined by

rtpnq “ α2rpnq ` 2p1 ´ αqrtpn ´ 1q ´ p1 ´ αq2rtpn ´ 2q. (7)

To a minor extent, detector performance depends on the
phase response of the selected exponential averager. Depend-
ing on the choice of α, the exponential averager in (7) produces
a group delay that has to be taken into account. Accordingly, α
is set to the same value for the respective exponential averagers
associated with rtpnq, Itpnq, and Btpnq to ensure identical group
delay.

In the following, the AF detector is referred to as either
offline or online, depending on whether filtering is performed
according to (2) or (7). These two versions have the same com-
putational complexity.

3. Datasets and performance evaluation

3.1. Clinical signals

The algorithm was developed on the Long Term Atrial Fib-
rillation (LTAF) database [16, 17], composed of 84 ECG record-
ings from patients with paroxysmal or persistent AF, most record-
ings with a 24-h duration. The entire database consists of nearly
9 million beats of which 59% occur during AF.

The MIT–BIH Atrial Fibrillation database [18, 17] and the
MIT–BIH Normal Sinus Rhythm (NSR) database [17] were used
for performance evaluation. The MIT–BIH AF database in-
cludes 25 AF recordings of approximately 10-h duration, and
contains in total more than 1 million beats, of which 43% oc-
cur during AF. Two subsets of the AF database were also an-
alyzed in order to facilitate the comparison with published re-
sults, namely, by excluding records 00735 and 03665 since these
only contain RR interval information [19, 9], and by excluding
records 04936 and 05091 since these contain incorrect annota-
tions [5, 20]. The resulting two subsets are labeled AFDB1 and
AFDB2, respectively.

The MIT–BIH NSR database contains 18 ECG recordings
of approximately 24-h duration, with a total of almost 2 million

3



beats. Since no significant arrhythmias are present, it is well-
suited for evaluation of detector specificity. To facilitate the
comparison, the performance of the proposed detector has been
evaluated on the commonly used combinations of the MIT–BIH
AF and the MIT–BIH NSR databases.
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Figure 3: Two examples of paroxysmal AF, each containing two AF episodes
with 100 beats; note that the RR interval series are simulated. The mean and
standard deviation of the heart rate during sinus rhythm is (a) 60 ˘ 1 beats per
minute (bpm) and (b) 60 ˘ 5 bpm.

3.2. Test signals
The emerging interest in the detection of brief episodes of

paroxysmal AF [1, 12] motivated us to investigate performance
as a function of episode duration. Due to the lack of annotated
databases with brief episodes, the recently proposed paroxys-
mal AF simulator in [11] has been applied. RR intervals dur-
ing sinus rhythm are generated by the model in [21], whereas
an atrioventricular node model is used to generate RR intervals
during AF [22]. When combining these two models, different
RR interval series can be generated with variable episode dura-
tion, mean heart rate, and heart rate variability as illustrated in
Fig. 3.

Detector performance was tested using different RR series
with alternating episodes of SR and AF. The entire database
with simulated signals consists of four datasets, each dataset
defined by the mean and standard deviation of the heart rate
during sinus rhythm, namely, 60 ˘ 1, 60 ˘ 5, 100 ˘ 1, and
100 ˘ 5 bpm. Each dataset is, in turn, divided into nine subsets
with fixed AF episode lengths, ranging from 20 to 180 beats in
steps of 20 beats. Thus, the database is composed of 36 subsets,
each consisting of 5000 RR intervals for which 100 realizations
were computed.

3.3. Performance measures
The performance was investigated in terms of the area un-

der the curve (A) of the receiver operating characteristic (ROC),
sensitivity (Se) and specificity (Sp). Sensitivity is defined by the
number of correctly detected AF beats divided by the total num-
ber of AF beats, whereas specificity is defined by the number of
correctly detected non-AF beats divided by the total number of
non-AF beats. All other types of rhythm, including atrial flutter,
were labeled as non-AF.
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Figure 4: The influence of different parameters on detection performance in
terms of A: (a) α and γ for N “ 8 and δ “ 2 ¨ 10´4, (b) α and N for γ “ 0.03
and δ “ 2 ¨ 10´4, and (c) α and δ for γ “ 0.03 and N “ 8. These results are
based on the LTAF database.

4. Results

4.1. Parameter settings

Figure 4 displays A as a function of the exponential aver-
aging parameter α for the LTAF database. For all investigated
values of γ,N, and δ, the results show that A improves as α de-
creases. While these results suggest that a small α should be
chosen, such a choice also means that the risk of missing brief
episodes of paroxysmal AF increases. Therefore, it is important
to complement the results in Fig. 4 with others that pinpoint de-
tection performance as a function of episode length.

Using simulated signals, Fig. 5 demonstrates that the detec-
tion of brief episodes improves as α increases. For example,
for α “ 0.1, an area under the curve of A “ 0.92 is obtained
for 20-beat episodes, whereas, for α “ 0.02, the same value of
A is obtained for 60-beat episodes. Hence, it can be concluded
from the results in Figs. 4 and 5 that the choice of α should be a
trade-off between avoiding false alarms due to non-AF arrhyth-
mias (calling for a small α) and detecting brief AF episodes
(calling for a large α).

Another important result conveyed by Fig. 5 is that better
performance is obtained in situations with low heart rate and
low variability (i.e., 60 ˘ 1 bpm) than in situations with high
heart rate and high variability (i.e., 100 ˘ 5 bpm).

Based on the results in Figs. 4 and 5, the following pa-
rameter values were chosen as a trade-off between the above-
mentioned performance aspects: γ “ 0.03 s, N “ 8, δ “

2 ¨ 10´4, and α “ 0.02. Unless otherwise stated, these values
are used in the following.

4.2. Detection threshold

Figure 6 displays the distribution of the detector outputOpnq

for AF and non-AF beats in the LTAF database. Based on the
properties of these two distributions, the detection threshold η
was chosen as that particular value where sensitivity and speci-
ficity are identical, i.e., η “ 0.725.

4.3. Briefest episode length

The briefest possible AF episode that can be detected was
determined by means of simulated RR intervals with one, sin-
gle AF episode. Starting with an episode length of five beats,

4



20 60 100 140 180
0.5

0.6

0.7

0.8

0.9

1

A

Episode length, beats

 

 (a)

α = 0.01

60 ± 1 bpm 60 ± 5 bpm 100 ± 1 bpm 100 ± 5 bpm

20 60 100 140 180
0.5

0.6

0.7

0.8

0.9

1

A

Episode length, beats

(b)

α = 0.02

20 60 100 140 180
0.5

0.6

0.7

0.8

0.9

1

A

Episode length, beats

(c)

α = 0.05

20 60 100 140 180
0.5

0.6

0.7

0.8

0.9

1

A

Episode length, beats

(d)

α = 0.1

Figure 5: Detection performance A as a function of AF episode length for
(a) α “ 0.01, (b) α “ 0.02, (c) α “ 0.05, and (d) α “ 0.1. These results are
based on simulated signals which do not contain any arrhythmias except AF.
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Figure 6: Distribution of the output Opnq during AF and non-fibrillatory
rhythms (non-AF). The large bin close to 0 for non-AF beats is due to the
bigeminy suppression block. These results are based on the LTAF database.

the length was, in this particular test, incremented by one beat
at a time until the episode was detected. The episode length
is presented in Table 2 for different values of α—a parame-
ter which is particularly influential on detection performance—
together with the corresponding detection delay. For α “ 0.02,
the shortest episode detected contained 60 beats, whereas for
α “ 0.05, episodes as short as 15 beats could be detected

4.4. Detection on ECG databases

Detection performance was studied for various combina-
tions of the MIT–BIH AF and MIT–BIH NSR databases, see
Table 3. Using the offline detector with α “ 0.02, the sensi-
tivity/specificity were found to be 97.1/98.3% on the MIT–BIH
AF database, whereas the online version performed marginally
worse with 96.9/98.2%. When omitting the two records with
incorrect annotations, i.e., when analyzing AFDB2, the sensi-
tivity increased from 97.1% to 98.0% for the offline version.
When evaluating performance on the MIT–BIH NSR database,

Table 2: The briefest possible episode detected for different values of α and the
corresponding detection delay. In this particular test, an episode was considered
as detected whenever the annotation and the detector output overlapped with at
least 50%.

Episode Delay,
α length, beats beats
0.005 300 318
0.01 120 158
0.02 60 78
0.05 15 30
0.1 8 14

a specificity of 98.6% was achieved for both the off- and online
detectors (sensitivity was not evaluated since no AF episodes
were present).

Tuning the detector to finding briefer episodes, e.g., by us-
ing α “ 0.05, Table 3 shows that such tuning comes at the ex-
pense of slightly reduced performance since the sensitivity/specificity
drop from 97.1/98.3% to 96.7/97.9% on AFDB for the offline
detector.

4.5. Off- and online detection

The slight difference in performance between the off- and
online versions is due to the different filters used for trend es-
timation, defined by (2) and (7). The influence of a nonlinear
phase on the RR interval trend rtpnq is illustrated in Fig. 7. Al-
though the phase distortion is negligible when α is large, i.e.,
0.1, a slight exponential reaction during rhythm transitions can
be noted for α “ 0.02 or smaller, leading to slower reaction
when heart rate changes occur and higher phase disturbances.

0 500 1000 1500 2000 2500 3000

rb(n),α = 0.1

rb(n),α = 0.02

r(n)

Forward-backward One-directional

Beat number

Figure 7: RR interval trend estimation using forward–backward and unidirec-
tional filtering techniques. Note that the delay of the unidirectional filter has
been compensated for.

5. Discussion

A recent study has shown that AF is often overlooked af-
ter interventional therapies when the standard strategy for treat-
ment evaluation is used, i.e., at least two 24-h Holter record-
ings [23]. This finding suggest that continuous AF monitor-
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Table 3: Sensitivity and specificity of the proposed detector, evaluated for various combinations of the MIT–BIH Atrial Fibrillation (AFDB) and MIT–BIH Normal
Sinus Rhythm (NSRDB) databases. Records 00735 and 03665 are excluded in AFDB1, and records 04936 and 05091 in AFDB2.

α = 0.02 α = 0.05
Database offline online offline online

Se, % Sp, % Se, % Sp, % Se, % Sp, % Se, % Sp, %
AFDB 97.1 98.3 96.9 98.2 96.7 97.9 96.5 97.9
AFDB1 97.1 98.1 96.8 98.0 96.6 97.7 96.5 97.8
AFDB2 98.0 98.2 97.7 98.1 97.5 97.8 97.3 97.8
AFDB & NSRDB 97.1 98.5 96.9 98.5 96.7 98.4 96.5 98.4
AFDB1 & NSRDB 96.8 98.2 96.5 98.1 96.4 97.7 96.2 97.8
AFDB2 & NSRDB 97.3 98.2 97.0 98.2 96.8 97.8 96.7 97.8
NSRDB NA 98.6 NA 98.6 NA 98.6 NA 98.6

Table 4: Detector performance evaluated on the MIT–BIH Atrial Fibrillation
database (AFDB).

Method Year Database Se, % Sp, %
Proposed detector 2014 AFDB 97.1 98.3
Zhou et al. [8] 2014 AFDB 96.9 98.3
Carvalho et al. [10] 2012 AFDB1 93.8 96.1
Huang et al. [6] 2011 AFDB 96.1 98.1
Lake et al. [7] 2011 AFDB 91 94
Lian et al. [25] 2011 AFDB 95.8 96.4
Dash et al. [5] 2009 AFDB2 94.4 95.1
Tateno & Glass [26] 2001 AFDB 94.4 97.2

ing performed during much longer time spans should be rec-
ommended so that the success rate is not overestimated. How-
ever, current technology does not allow continuous monitoring
since most AF detectors require a substantial amount of compu-
tations which render efficient implementations difficult, espe-
cially for detectors which involve morphologic ECG features.
A first step towards efficient implementation was recently taken
in [24] where the RR-based detector in [5] was implemented in
application specific integrated circuit (ASIC). The results sug-
gest that the energy required for long-term operation, i.e., for
several years, is well within the battery capacity of an existing
implantable device.

The present detector is compared to the best-performing de-
tectors in the literature with respect to sensitivity and speci-
ficity, using the MIT–BIH AF database, see Table 4. Like in
most other studies, performance is presented with one decimal.
It is evident that the detector by Zhou et al. [8] performs al-
most as good as the present detector, although the difference
in performance increases slightly when the results are reported
with two decimals: sensitivity/specificity are 97.12/98.28% and
96.89/98.25%, respectively.

When evaluating detector performance, it is important, for
the reasons mentioned earlier, to also consider the ability to
detect brief AF episodes. Of the detectors in Table 4 which
employ a window length of 128 beats, i.e., [26, 5, 6, 25], it
was only Lian et al. [25] who also reported on performance for
shorter windows. Comparing their results obtained for a length
of 32 (i.e., the shortest window studied) with the results of the
present detector obtained for α “ 0.05, the sensitivity is 94.4%
vs. 96.7% and the specificity 92.6% vs. 97.9%, and thus the

present detector offers a considerable improvement in perfor-
mance.

Atrial fibrillatory episodes should have a duration of at least
30 s to be considered clinically significant [27], implying that
detectors with a 128-beat window tend to miss brief clinical
episodes. With the growing interest in detection of occult AF
episodes [28, 1, 12, 13, 29], with durations from 5 to 30 s, there
are even stronger reasons to develop AF detectors which can
operate with window lengths much shorter than 128. Such a
goal may not be easily achieved, however, when the detection
process involves the estimation of probabilities, e.g., used for
computing the sample entropy, since a shorter window implies
increased statistical uncertainty.

Thanks to the flexibility introduced by α, the present de-
tector can be tuned to detect brief episodes, although, just as
with any detector, improved detection of brief episodes comes
at the expense of lower specificity. Since the detector was de-
veloped on the LTAF database, mostly containing very long AF
episodes, it is not surprising that better performance was ob-
tained for a small α (ď 0.01), cf. Fig. 4. However, since the
detection delay becomes unacceptably large for such small val-
ues, α “ 0.02 was used as a suitable trade-off. For the online
detector, a smaller α leads to increased phase distortion and,
therefore, it may be motivated to consider more sophisticated
approaches to trend estimation [30, 31].

A specificity of 98.6% was achieved on the MIT–BIH Nor-
mal Sinus Rhythm database, see Table 3, indicating that the
detector produces few false alarms in the presence of respira-
tory sinus arrhythmia. This result is slightly better than those
reported in [6] and [8] where the specificity was found to be
98.2% and 98.3%, respectively.

When more complex arrhythmias are encountered, reduced
performance is expected. This reduction can estimated by ana-
lyzing the MIT–BIH Arrhythmia database [18, 17] which con-
tains a variety of more complex arrhythmias. The resulting
sensitivity/specificity were found to be 97.8/86.4%, indicating
that most AF episodes could be reliably detected, while certain
arrhythmias are misdetected as AF. Zhou et al. [8], being one
of the very few authors who have reported on the performance
on this database, achieved sensitivity/specificity of 97.3/90.8%,
where specificity is notably better than that of the present de-
tector. This difference in performance may be explained by the
much longer detection window used by Zhou et al. which pro-
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Figure 8: Examples of detector performance for various arrhythmia episodes of the MIT–BIH Arrhythmia database. The top row displays cases free of false alarms
during (a) multiple ventricular premature beats (VPBs), (b) 2nd degree atrioventricular block (2˝B) and (c) sinus bradycardia. The bottom row displays cases with
false alarms due to (d) atrial flutter (AFL) with irregular ventricular rhythm, (e) ventricular flutter (VFL), and (f) an episode of combined arrhythmias including AF,
AFL, atrial bigeminy, supraventricular tachycardia, atrioventricular junctional rhythm, and atrial premature beats.

duces better specificity when long AF episodes are encountered
(as is the case in this database).

The examples in Fig. 8 shed additional light on the pros and
cons of AF detection when performed in the presence of vari-
ous arrhythmias, none of them being AF. In the first three ex-
amples, the detector demonstrates excellent performance when
encountering frequent ectopic beats (Fig. 8(a)), episodes of 2nd
degree atrioventricular block (Fig. 8(b)), and sinus bradycardia
(Fig. 8(c)). On the other hand, the performance degrades when
atrial flutter (Fig. 8(d)) or ventricular flutter (Fig. 8(e)) are en-
countered since both these types of flutter are difficult to dis-
tinguish from AF when confining the analysis to RR intervals.
Figure 8(f) displays an episode of a complex supraventricular
arrhythmia which causes the detector to produce a false alarm.

It is likely that these false alarms in Fig. 8(d)–(f) can be
avoided by the introduction of a two-stage detection scheme.
With its high sensitivity, the present detector can be employed
in a first stage to find possible AF episodes. In a second stage, a
more advanced AF detector is employed which involves mor-
phologic information, like the detector described in [11], to
determine in further detail whether the detected episodes are
correct or not. Since morphologic analysis is computationally
much more costly, the second-stage detector should preferably
be implemented in a server or a smartphone.

While implementational aspects of the detector are outside
the scope of this study, e.g., whether ASIC or a field programmable
gate array (FPGA) should be used, a few observations on detec-
tor complexity can nonetheless be made. The present detector
requires a window of only 8 RR intervals which, as already
pointed out, is highly desirable from the viewpoint of detect-
ing brief episodes. Moreover, such a short window implies
very modest memory requirements which is desirable from the

viewpoint of energy consumption. With its extremely simple
structure, the detector requires just a few arithmetical opera-
tions (Table 1) and no table lookups and, consequently, the im-
plementation can be made very battery-conserving. It is noted
that further complexity reduction can be achieved by replacing
the multiplications in (2), (3), and (7) by additions and shifts
which are less costly, reducing the number of multiplications
from 8 to 2. For example, the choice α “ 0.02 can be closely
approximated with 5{256 « 0.01953 which is implemented by
5 additions and an 8-bit shift.

Zhou et al. [8] reported on the computation time needed
to analyze different public databases, but did not provide any
information on the required number of arithmetic operations per
RR interval. Since that detector makes use of high-order filters,
in addition to the buffer required for the 128-beat window, much
more memory is required than for the present detector.

The low complexity of the present detector is partly achieved
by avoiding rather involved steps for handling of ectopic beats
such as those in [5, 10]. Instead, simple filtering and flagging
techniques, i.e., (1) and (5), are employed for the purpose of
reducing the number of false alarms due to bigeminy—an ap-
proach which seems to perform well according to the results in
Table 4.

A limitation of the present study is that the proposed detec-
tor was not evaluated on real ECG data with occult paroxysmal
AF since no such database has yet been annotated. Instead, an
approach involving test signals has been pursued which still can
provide valuable insight on detection performance.

7



6. Conclusions

The present study shows that the proposed AF detector, de-
spite its extreme simplicity, offers better performance than do
the detectors described in the literature. An important feature of
the detector is its use of a short window, only 8 beats, facilitat-
ing the detection of brief, subclinical AF episodes. The detec-
tor is particularly well-suited for implementation in a battery-
powered device, e.g., an external or implantable event recorder,
thanks to the very few arithmetical operations required for each
RR interval.
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