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Photoplethysmography-Based Method for Automatic
Detection of Premature Ventricular Contractions

Andrius Sološenko, Andrius Petrėnas, Vaidotas Marozas, Member, IEEE

Abstract—This work introduces a method for detection of
premature ventricular contractions (PVCs) in photoplethysmo-
gram (PPG). The method relies on 6 features, characterising
PPG pulse power, and peak-to-peak intervals. A sliding window
approach is applied to extract the features, which are later
normalized with respect to an estimated heart rate. Artificial
neural network with either linear and non-linear outputs was
investigated as a feature classifier. PhysioNet databases, namely,
the MIMIC II and the MIMIC, were used for training and
testing, respectively. After annotating the PPGs with respect to
synchronously recorded electrocardiogram, two main types of
PVCs were distinguished: with and without the observable PPG
pulse. The obtained sensitivity and specificity values for both
considered PVC types were 92.4 / 99.9% and 93.2 / 99.9%,
respectively. The achieved high classification results form a basis
for a reliable PVC detection using a less obtrusive approach than
the electrocardiography-based detection methods.

Index Terms—PVC, PPG, MIMIC, Arrhythmia, Adaptive
Filter, Extrasystoles, Artificial Neural Network (ANN)

I. INTRODUCTION

PREMATURE ventricular contractions (PVCs) are the
most commonly encountered cardiac disorder in humans.

PVCs are initiated by the secondary pacemakers – the ec-
topic foci, located in the ventricles, therefore causing them
to contract prematurely. It is well known that PVCs may
occur even in healthy hearts with no significant impact on
overall well-being. Accordingly, early studies have suggested
that PVCs could be considered as benign in the absence of
structural heart disease [1]. However, more recent studies have
denied the benignity of PVCs, linking them to various health
abnormalities. For example, increased frequency of PVCs has
been associated with heart failure and sudden death if a heart
disease was suspected [2, 3]. PVCs have also been found
to be a trigger of other serious heart arrhythmias such as a
ventricular fibrillation [4], and atrial fibrillation [5, 6].

Several studies have shown, e.g., [7], that PVCs have a
potential to be used as a predictor of sudden cardiac death in
men even without recognized heart disease. This particularly
applies if frequent PVCs occur during physical exercise [2, 8],
and especially during the phase of recovery [2, 9]. Since PVCs
usually cause inefficiency in blood circulation, notably in cases
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Andrius Petrėnas is with the Biomedical Engineering Institute, Kaunas
University of Technology, Kaunas, Lithuania.

Vaidotas Marozas is with the Dept. of Electronics Engineering and
Biomedical Engineering Institute, Kaunas University of Technology, Kaunas,
Lithuania.

of multiple frequent PVCs, i.e., bigeminy (every 2nd beat
is premature) and trigeminy (every 3rd beat is premature),
such condition may lead to a dizziness or a temporal loss
of consciousness [10–12]. In addition, PVCs are common in
patients with chronic kidney disease [13], being a consequence
of electrolyte shifts (e.g., low blood potassium and calcium),
resulting in electrolyte imbalance during procedures such as
hemodialysis.

In most cases, PVCs have a distinctive morphology, thus
are relatively easy detectable in electrocardiogram (ECG).
Hence, PVC characterising properties, such as frequency and
morphology, are usually evaluated using conventional Holter
monitors. However, the electrodes used to record ECG are
attached to the patient’s chest, resulting in discomfort, limited
freedom of movement, and increased feeling of unhealthiness,
especially after wearing the device for several days [14].

On the contrary to Holter monitors, photoplethysmography–
based devices offer a cheaper and a more convenient way for
a daily life screening, since no electrodes are needed [15].
Photoplethysmography is a non-invasive technique commonly
applied for monitoring of hemodynamic changes in the car-
diovascular system by illuminating tissue with a certain wave-
length (e.g., infrared, red, yellow, green light). In contrast
to ECG electrodes, the photoplethysmographic sensors are
more patient–friendly since the sensor can be attached to a
finger [16], to be integrated into the ear-phones [17, 18],
implemented in a forehead band [18, 19] or used as a wrist
sensor [18–20]. Somehow surprisingly, only a few studies have
been dedicated to PVC detection using photoplethysmography
technique [16, 21, 22].

In this study, we propose a method that involves PPG pulse
power-derived features in addition to the temporal features that
have been explored in earlier works. An important property
of the proposed method is that the temporal features are
normalized according to a preceding heart rate, estimated
by combining temporal preprocessing and spectral analysis.
Hence, differently from the previous studies, this solution
allows to detect PVCs even during the episode of bigeminy.
In addition, an artifact detector was implemented in order to
reduce the number of false alarms.

The paper is organized as follows: PPG waveforms together
with a signal database are described in Section II, followed by
a description of the proposed method in Section III. The results
of PVC detection are presented in Section IV.

Preliminary results of this study were presented in a shorter
conference publication [23].
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Fig. 1. Examples of PVC pulse types in PPG together with reference ECG: (a) PPG pulses during normal sinus rhythm (labelled as N ) with a single PVC
that is not followed by any observable pulse (labelled as P 1), (b) a single PVC characterized by a small pulse amplitude (labelled as P 2), (c), consecutive
type P 1 pulses (bigeminy), (d) bigeminy with both PVC pulse types. In this particular example, ECGs and PPGs were preprocessed with zero-phase band-pass
filters having cut-off frequencies of 0.05-150 Hz and 0.4-15 Hz, respectively

II. PPG WAVEFORMS AND DATASET

A. Waveforms

It is well-known that the alternating part of the PPG is
proportional to the peripheral blood volume changes [24].
Premature contractions result in a reduced ventricular filling,
diminishing the peripheral pulse amplitude [25]. Therefore,
the PPG pulses during PVC may become hardly recognizable
(Fig. 1 (a)), or may still have a sufficient amplitude for peak
detection (Fig. 1 (b)). These two types of premature pulses in
the PPG are denoted as P 1 and P 2, respectively.

B. Dataset

The algorithm was developed on 18 PPGs (training set),
sampled at 125 Hz, which were taken from the PhysioNet
MIMIC II database [26, 27]. Twenty-five 1-2 h PPGs, sampled
at 250 Hz (the MIMIC database [28]), and 1 signal sampled
at 250 Hz of 100 min (recorded in Kaunas Biomedical
Engineering Institute, labelled as BMEI) were used for testing.
To reduce the errors that may occur during feature extraction,
all signals were resampled to 500 Hz.

PVCs in the PPG were annotated with respect to a syn-
chronously recorded reference ECG. At first, PVCs in the ECG
were detected by using an automated RR interval detection
algorithm [29]. Then, RR intervals were used for manual
evaluation of ECG morphology to ensure that the particular
beat is PVC. Finally, PVC-related PPG pulses were labelled

TABLE I
TEST PPGS OBTAINED FROM THE MIMIC DATABASE (NO. 1-25) AND

RECORDED IN KTU BME INSTITUTE (NO. 26)

No. Signal
name

#P 1 #P 2 No. Signal
name

#P 1 #P 2

1 039m 0 0 14 404m 0 268
2 041m 0 0 15 408m 9 2
3 055m 1 0 16 439m 12 3
4 211m 0 0 17 442m 1288 366
5 212m 159 30 18 444m 7 10
6 218m 0 0 19 449m 7 2
7 221m 11 0 20 466m 3 4
8 224m 0 0 21 471m 1 0
9 225m 0 11 22 474m 2 4
10 230m 0 4 23 482m 48 88
11 237m 40 14 24 484m 69 20
12 252m 0 0 25 485m 754 16
13 253m 0 0 26 BMEI 25 2

Total: 211 59 Total: 2225 785

as P 1 or P 2 according to the previously described procedure.
The remaining PPG pulses were assigned to normal N .

Since the signals in both databases (MIMIC and MIMIC II)
contain severe signal corruptions or various pathologies, sev-
eral of them were excluded from the study. The criteria for
discarding the signals was the absence of usable information
in either ECG or PPG, therefore resulting in difficulties to
correctly annotate the signals. The list of the test signals is
presented in Table I.
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Fig. 2. Block diagram of the proposed method. Here fNHR is a normal heart rate, PP is a peak-to-peak interval, PR is a power ratio, ANN is an artificial
neural network, sbp is a preprocessed PPG, saf is a PPG with higher frequency components removed

III. METHOD

The proposed method for PVC detection and classification
exploits temporal (peak-to-peak intervals, PP s) and power-
derived (the power ratios, PRs) features, obtained for each
PPG pulse. The method is composed of 3 major parts:
PPG preprocessing, feature extraction, and classification (see
Fig. 2).

A. Preprocessing and feature extraction

To minimize high frequency noise and baseline wandering,
PPGs are preprocessed by using low-pass and high-pass finite
impulse response (FIR) filters with 5 Hz and 0.4 Hz cut-
off frequencies, respectively, thus resulting in a signal sbp

(Fig. 2 block 1). These cut-off frequencies correspond to
approximal maximal and minimal physiological heart rates.
A 12 s sliding analysis window with 50% overlap is used
for feature extraction (Fig. 2 block 2). Positive peaks of the
preprocessed PPG are detected by using threshold crossing
technique (Fig. 2 block 3). Then, series of operations are
applied (Fig. 2 block 4) for estimation of a normal heart rate
(fNHR) (see Fig. 3).
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Fig. 3. Block diagram of the normal heart rate estimator. Here sbp is a 12 s
segment of the preprocessed PPG

When estimating fNHR, it is crucial to reduce the influence
of impulse noise, i.e., noise of higher amplitude than PPG,
which may be falsely associated to fNHR during spectral
analysis. First, PPG is clipped in the empirically determined
range of ±0.7std of the preprocessed PPG, and smoothed by
applying a moving average filter. Then, the 1st derivative of
the resulting PPG is calculated. The 1st derivative acts as a
high pass filter that emphasizes higher frequency components
of the PPG. In addition, the 1st derivative is particularly
useful when PPG segments contain bigeminy episodes, which
result in nearly 2 times lower PPG pulse rate compared to a
normal rhythm (see Fig. 1 (c)). Next, fNHR is estimated by
taking the frequency at the maximal amplitude of the power
spectral density (PSD) function. Finally, outliers are removed
by filtering the array of fNHR using a 3rd order median filter.

Normally, heart rate is inversely related to PP intervals.
However, for a specific PVC type (cf. Fig. 1 (a) and (c)),
the length of PP can be approximately twice the length of
the interval between the subsequent PPG pulses occurring
during normal rhythm. Therefore, in order to make PP s
heart rate independent, PP -related features are normalized
before applying them to classifier. One way to normalize PP
intervals is to calculate the ratio of the current and the mean
values of the intervals [22]. However, the former normalization
principle is sensitive to erroneously detected PP value, i.e.,
during bigeminy or artifacts. Hence, PP -related features are
normalized (Fig. 2 block 5) with respect to fNHR:

PPj =

(
p j − p j−1

)
fNHR

fs
, (1)

where j is a PP number, pj is an array of index value of
detected positive peaks, fs is a sampling frequency (Hz), and
fNHR is a normal heart rate (Hz). Normalized PP intervals
are close to 1 during normal heart rhythm, whereas take either
lower or higher values during PVCs.

The second high-pass FIR filter is characterized by a
variable cut-off frequency (Fig. 2 block 6), and is employed
for the purpose to extract higher frequency components of
PPG (from fNHR to 5 Hz). The cut-off frequency is adjusted
according to the current value of fNHR. Then, the resulting
signal is used as a reference input to a pre-whitened recursive
least squares (RLS) adaptive filter (Fig. 2 block 7) [30].
The order and the forgetting factor of RLS filter were set
to 10 and 0.999, respectively. Given that PPG pulses during
PVCs are composed of lower frequency components compared
to normal rhythm, subtraction of higher frequencies produce
a signal saf , which consists solely of premature pulses.
Therefore, the amplitude of PVCs is not affected, while the
PPG pulses are suppressed considerably during a normal heart
rate (Fig. 4 (c)).

The power ratios (PRs) are computed in segments between
two adjacent PPG pulses by involving both preprocessed PPG
sbp and the signal saf :

PRk =

N∑
n=1

(
safn − saf

)2
N∑

n=1

(
sbpn − sbp

)2 , (2)



JOURNAL OF IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. , NO. , OCTOBER 2015 4

( )

 

( )

<1

2
( )

0

( e)
1

a

(b)

c

d

1

0

Normal N PVC type P  1  PVC type  P  
2

2

<1

Fig. 4. Example of detected PVCs in the PPG: (a) reference ECG, (b) preprocessed PPG with PVCs (sbp), (c) output of the adaptive filter (saf ), (d)
normalized peak-to-peak intervals (PP s), and (e) power ratios (PRs). The vertical lines in (d) and (e) denote the ranges of the normalized PP and PR
values, respectively.

where k is a segment number, N is a segment length (total
samples in PP interval), saf is a mean amplitude of samples
in saf , and sbp is a mean amplitude of samples in sbp. Since
PPG amplitude is markedly suppressed in normal beats, the
power ratios PR take lower values than in PVCs.

B. Classification
Feed-forward artificial neural network (ANN) with either

linear or non-linear outputs was investigated for classification
of individual PPG pulses (Fig. 5).
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Fig. 5. Block diagram of the ANN-based PPG pulse classifier. Here I stands
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W b are biases of the neurons in the output layer, and C are the outputs of
the ANN (classes)

Since each individual PPG pulse is described by 3 intervals
(preceding, current and subsequent), various interval combi-
nations are feasible, therefore it is reasonable to distinguish
many classes (i.e., 10, see Table II) in order to reduce a
misclassification rate. These 10 classes (Fig. 1 block 9) are
further grouped into 3 super-classes, denoted by P 1, P 2 and
N , respectively (Fig. 1 block 10). The full list of classes and
super-classes is presented in Table II.

The number of neurons in a hidden layer of ANN was cho-
sen empirically, and was set to 40. A back-propagation method
was used for training [31]. To cope with the overfitting, a small
random noise was added to each of the input [32]. Both ANN
and back-propagation learning method were implemented in
Matlab environment.

TABLE II
PPG PULSE CLASSIFICATION INTO (a) 10 CLASSES AND (b) 3

SUPER-CLASSES
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C. Artifact detection

Motion and tissue deformation induced artifacts is a cru-
cial issue hindering the development of arrhythmia detectors
that are based on the PPG. To reduce the number of false
alarms due to falsely detected pulses, an artifact detector is
implemented.

The process of artifact detection is illustrated in Fig. 6.
In the analysis window, artifacts are flagged with respect
to the ratio, obtained by dividing the clipped PPG by the
preprocessed (Fig. 6 (a)). Since the clipped PPG has lower
amplitude, the ratio approaches to 0 when artifacts occur. PPG
is flagged as an artifact whenever the empirically determined
threshold exceeds 0.3. In addition, 4 pulses before and after
the artifact are excluded from classification.

D. Performance evaluation

The performance of the method was evaluated in terms of
sensitivity (Se), specificity (Sp) and accuracy (Acc). Due to
the a considerable difference in a number of normal pulses and
PVCs, the Matthews correlation coefficient was employed as
an additional performance measure (MCC) [33].

The method was tested by using ANN with either linear and
non-linear outputs. The full feature set (3 PP and 3 PR) was
applied for training the ANN. In addition, the performance
was also tested with a reduced feature set, consisting of just
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3 PP inputs. Since, the weights in the ANN are initialized
randomly, the training process has been repeated 3 times, and
then the averaged performance values were taken as the overall
performance measure.

It should be noted that the initial testing was carried
out without involving artifact detection. Then, both the best
performing, and the most computationally efficient (with PP
features, linear outputs, and the blocks 6, 7 and 8 excluded
in Fig. 2) configurations were used for a repeated testing but
with the artifact detector involved.

IV. RESULTS

The results are presented in Tables III–VI. Table III shows
that the performance of ANN does not depend on the type
of neurons in the output layer, although slightly better results
are obtained when an ANN with the linear outputs is used.
On the other hand, ANN that employs only PP feature set is
associated with a higher accuracy when non-linear outputs are
used (Table IV).

The ANN with linear outputs and full feature set was
further reinvestigated but with the artifact detector included.
The inclusion of the artifact detector allowed to reduce a
number of false positives by approximately 60%. Thus, the
Sp for PVC types P 1 and P 2 increased from 99.6 / 99.8%
to 99.9 / 99.9%, respectively. However, the inclusion of the
artifact detector resulted in a slight decrease in Se from
94.2 / 93.1% to 93.2 / 92.4%, respectively (Table V). The
decrease in sensitivity can be explained by the fact that some
of premature pulses have similar morphology to artifacts, and
therefore have been removed from further analysis.

The most computationally efficient configuration is associ-
ated with a slightly worse performance compared to the best
performing configuration (see Tables V and VI). By combining
this configuration with the artifact detector, a number of false
positives decreased by approximately 63% compared to that
without the artifact detector. Moreover, Sp for the P 1 PVC
type increased from 99.6% to 99.9%. In contrast, Sp for
P 2 PVC type remained unchanged. According to previous
explanation, a slight decrease in Se is observed for both PVC
pulse types, i.e., from 90.5 / 84.0% to 89.5 / 83.2% for P 1

and P 2, respectively.

TABLE III
THE CLASSIFICATION RESULTS OBTAINED USING BOTH PP AND PR
FEATURES AS AN INPUT TO ANN: (a) PERFORMANCE MEASURES, (b)

CONFUSION MATRICES

Linear output ANN Non-linear output ANN

Class ⇒ N P 1 P 2 N P 1 P 2

(a)

Se,% 99.4 94.2 93.1 99.3 93.2 91.6

Sp,% 94.2 99.6 99.8 93.1 99.5 99.8

Acc,% 99.3 99.5 99.8 99.3 99.5 99.8

MCC,% 78.3 79.3 75.2 78.0 77.5 75.2

Class ⇒ N P 1 P 2 N P 1 P 2

(b)

N 255002 133 57 254867 156 70

P 1 1122 2295 1 1236 2271 1

P 2 496 8 786 468 9 773

TABLE IV
THE CLASSIFICATION RESULTS OBTAINED USING SOLELY PP -BASED
FEATURES: (a) PERFORMANCE MEASURES, (b) CONFUSION MATRICES

Linear output ANN Non-linear output ANN

Class ⇒ N P 1 P 2 N P 1 P 2

(a)

Se,% 99.3 90.5 84.0 99.0 91.2 91.0

Sp,% 89.1 99.6 99.8 92.6 99.4 99.7

Acc,% 99.2 99.5 99.7 99.0 99.3 99.7

MCC,% 74.4 77.1 66.8 71.7 73.5 66.5

Class ⇒ N P 1 P 2 N P 1 P 2

(b)

N 255069 222 134 253302 186 53

P 1 1134 2205 1 1499 2237 0

P 2 610 9 709 768 13 746

V. DISCUSSION

The goal of this work was to develop a method for detection
of premature ventricular contractions by relying solely on
photoplethysmography signal analysis. Our first attempt to
detect premature contractions by using PPG was presented
in an earlier study [34]. Besides that the pilot study was
performed on the basis of just 9 PPG signals, the previous
algorithm, in contrast to the proposed, had limited capabilities
of detecting successive premature pulses such as bigeminy.

In contrast to ECG, the PPG can be acquired in a single
spot of the body, let alone the fact that no adhesive electrodes
are required. Considering these points, PPG-based arrhythmia
detection is an attractive solution for both short-term screening
and long-term arrhythmia monitoring when unobtrusiveness
for the user is of special importance.

The proposed PVC detector, thanks to the blocks of adaptive
feature extraction and artifact detection, allowed to achieve
better performance than that obtained by Gil et al. [22]. Even
though, Gil et al. excluded PVCs that had occurred within
5 previous or 20 subsequent beats, our method was more
accurate (99.8 vs. 99.3%).

The study revealed that the main challenge is to distinguish
PVCs from artifacts, since the distorted PPG pulse can be
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TABLE V
THE CLASSIFICATION RESULTS OBTAINED USING LINEAR OUTPUT ANN

CLASSIFIER, BOTH PP AND PR FEATURES AND ARTIFACT DETECTOR: (a)
PERFORMANCE MEASURES, (b) CONFUSION MATRICES

Class ⇒ N P 1 P 2

(a)

Se,% 99.8 93.2 92.4

Sp,% 93.3 99.9 99.9

Acc,% 99.7 99.8 99.8

MCC,% 87.7 91.3 78.7

Class ⇒ N P 1 P 2

(b)

N 255891 158 63

P 1 262 2270 1

P 2 373 8 780

TABLE VI
THE CLASSIFICATION RESULTS OBTAINED USING LINEAR OUTPUT ANN,
PP FEATURES AND ARTIFACT DETECTOR: (a) PERFORMANCE MEASURES,

(b) CONFUSION MATRICES

Class ⇒ N P 1 P 2

(a)

Se,% 99.7 89.5 83.2

Sp,% 88.2 99.9 99.8

Acc,% 99.5 99.8 99.7

MCC,% 81.9 87.5 68.3

Class ⇒ N P 1 P 2

(a)

N 254696 246 137

P 1 362 2181 1

P 2 523 9 683

erroneously assigned to a class of premature beat. Thus is,
high amplitude artifacts may usually distort a group of nearby
pulses and introduce residual distortions in a shape of further
pulses. Nevertheless, even the simplified configuration of the
algorithm showed sufficient performance to detect PVCs in
artifact-distorted PPGs (see Table IV (a)). Therefore, the
simplified (computationally efficient) configuration can be
considered for the implementation in a mobile device.

Although the algorithm shows nearly perfect specificity
(99.9%), the specificity can be further improved by computing
PRs in several discrete ranges of each PP , rather than obtain-
ing PRs in the entire PP interval. Additional improvement in
specificity may be achieved by upgrading an artifact detector,
since the current artifact detector is effective only in cases
when artifacts have higher amplitude than a normal PPG pulse.

In this study, high-pass and low-pass FIR filters were used
to pre-process the PPG. However, more advanced signal pro-
cessing techniques can be employed either to eliminate PPG
distortions, such as baseline wandering [35, 36], or to assess
PPG quality [37, 38]. Initial tests showed that a single-layer
perceptron classifier does not converge during training, owing
to the fact that the PPG features used in the present study
are not linearly separable. Hence, a multi-layer perceptron
(i.e., ANN) was chosen due to its universal characteristics

and ability to approximate linear and non-linear functions. In
addition, the performance of PPG pulse classification largely
depends on an estimated normal heart rate (parameter fNHR)
which influences the normalization process.

The presented study has several limitations. Firstly, the sig-
nals have not been annotated by the medical experts. Secondly,
the method has not been tested on the signals recorded during
active motion, such as walking and jogging. Finally, for some
rare PVC types (e.g., interpolated PVCs) [39], PVCs can not
be detected by the algorithm because PPG is not enough
sensitive to hemodynamic changes during such cardiac events.

VI. CONCLUSIONS AND SIGNIFICANCE OF THE WORK

A photoplethysmography-based method for detection of
premature ventricular contractions has been developed. Con-
sidering its high performance, the proposed PVC detector is
expected to have both a non-clinical (e.g., sleep monitoring)
and a clinical (e.g., in hemodialysis procedures) relevance
when moderate physical activity is involved.

APPENDIX

The appendix briefly describes an online implementation of
the proposed method. The online version of the method was
implemented as the application for the use in Android operat-
ing system. The most computationally efficient configuration
of the algorithm (i.e., PP features, linear ANN outputs, and
the blocks 6, 7 and 8 excluded in Fig. 2) was selected for the
implementation. The PPG is transmitted to the smartphone via
Bluetooth connection.

Figure 7 shows a screenshot of the application running on
the smartphone. PPG segment with correctly detected PVCs
during the episode of bigeminy is shown in a chart on the
top of the application window. The bottom chart shows the
normalized peak-to-peak intervals. The sliding panel on the
right side provides an important information about the number
of detected PVCs and the PVC burden, determined by a
percentage of PVC-related beats compared to a total number
of beats.

Fig. 7. Screenshot of the Android application with the implemented PVC
detection algorithm. An application window shows detected PVCs during
bigeminy episode, and other heart rhythm related parameters. Note that this
particular signal is characterized by a very high heart rhythm (220 bpm)
outside the episode of multiple PVCs
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