Estimation of Pulse Arrival Time Using Impedance Plethysmogram from Body Composition Scales

Birutė Paliakaitė¹, Saulius Daukantas², Andrius Sakalauskas², Vaidotas Marozas¹,²

¹Department of Electronics Engineering, Kaunas University of Technology
²Biomedical Engineering Institute, Kaunas University of Technology

April 13-15, 2015
Arterial stiffness leads to the development of cardiovascular morbidity and mortality\(^1\).

Central (aortic) stiffness:
- elderly subjects,
- end-stage renal disease,
- hypertension,
- impaired glucose tolerance.

Peripheral (lower-limbs) stiffness:
- peripheral artery disease,
- diabetic peripheral neuropathy.

Arterial stiffness leads to the development of cardiovascular morbidity and mortality.

Central (aortic) stiffness\(^1\):
- elderly subjects,
- end-stage renal disease,
- hypertension,
- impaired glucose tolerance.

Peripheral (lower-limbs) stiffness:
- peripheral artery disease,
- diabetic peripheral neuropathy.

Arterial stiffness leads to the development of cardiovascular morbidity and mortality.

Central (aortic) stiffness:
- elderly subjects,
- end-stage renal disease,
- hypertension,
- impaired glucose tolerance.

Peripheral (lower-limbs) stiffness:
- peripheral artery disease\(^2\),
- diabetic peripheral neuropathy\(^3\).

Arterial stiffness can be characterized by the propagation of the pulse pressure wave (PPW) along the arterial tree.
Arterial stiffness can be characterized by the propagation of the pulse pressure wave (PPW) along the arterial tree.

Pulse arrival time (PAT) – the time interval between the R-wave of the QRS complex and the particular point in the PPW.
Arterial stiffness can be characterized by the propagation of the pulse pressure wave (PPW) along the arterial tree.

Pulse arrival time (PAT) – the time interval between the R-wave of the QRS complex and the particular point in the PPW.
Arterial stiffness can be characterized by the propagation of the pulse pressure wave (PPW) along the arterial tree.

Pulse arrival time (PAT) – the time interval between the R-wave of the QRS complex and the particular point in the PPW.
Arterial stiffness can be characterized by the propagation of the pulse pressure wave (PPW) along the arterial tree.

Pulse arrival time (PAT) – the time interval between the R-wave of the QRS complex and the particular point in the PPW.
Long-term periodic monitoring needed
Long-term periodic monitoring needed

Available devices for PPW recording
Long-term periodic monitoring needed

Available devices for PPW recording

Illustration retrieved from http://www.atcormedical.com/
Long-term periodic monitoring needed

Available devices for PPW recording

Illustrations retrieved from http://www.atcormedical.com/
Long-term periodic monitoring needed

Available devices for PPW recording

Illustrations retrieved from http://www.atcormedical.com/
Long-term periodic monitoring needed

Available devices for PPW recording

Long-term periodic monitoring needed

Available devices for PPW recording:

- Operator dependent
- Results rely on the placement

Impedance plethysmography (IPG) to determine changing tissue volumes (e.g. blood)

\[\Delta R = \rho \frac{l^2}{\Delta v} \]
Impedance plethysmography (IPG) to determine changing tissue volumes (e.g. blood).

ECG and IPG electrodes integrated into unobtrusive devices (e.g. bathroom scales)

Illustration retrieved from *OMRON HBF-510 Instruction Manual*
The lower-body IPG signals are the sum of the local impedances of all segments between the voltage electrodes,
The lower-body IPG signals are the sum of the local impedances of all segments between the voltage electrodes,

but the influence of the lower parts is the greatest.

The lower-body IPG signals are the sum of the local impedances of all segments between the voltage electrodes,

but the influence of the lower parts is the greatest.

The goal of this study is to demonstrate that PAT from the heart to the foot can be estimated using ECG and IPG recorded on the bathroom scales.

Body composition scales (Omron)

- ECG: wireless ECG transmitter (Biopac)
- IPG: electrical bioimpedance unit (Biopac)
- IPG: photoplethysmogram amplifier unit (Biopac)
- Body composition scales (Omron)
- **ECG**: wireless ECG transmitter (Biopac)
- **IPG**: electrical bioimpedance unit (Biopac)
- **IPG**: photoplethysmogram amplifier unit (Biopac)

Illustration retrieved from *OMRON HBF-510 Instruction Manual*
- Body composition scales (Omron)
- ECG: wireless ECG transmitter (Biopac)
- IPG: electrical bioimpedance unit (Biopac)
- IPG: photoplethysmogram amplifier unit (Biopac)

Illustration retrieved from *OMRON HBF-510 Instruction Manual*
- Body composition scales (Omron)
- ECG: wireless ECG transmitter (Biopac)
- IPG: electrical bioimpedance unit (Biopac)
- PPG: photoplethysmogram amplifier unit (Biopac)

Illustration retrieved from OMRON HBF-510 Instruction Manual
Four healthy subjects (one woman)

Paced respiration (0.1 Hz) to cause hemodynamics changes
Four healthy subjects (one woman)

Paced respiration (0.1 Hz) to cause hemodynamics changes
Four healthy subjects (one woman)

Paced respiration (0.1 Hz) to cause hemodynamics changes

Measurement cases

foot-to-foot

single-foot

Illustration retrieved from *OMRON HBF-510 Instruction Manual*
Four healthy subjects (one woman)

Paced respiration (0.1 Hz) to cause hemodynamics changes

Measurement cases

foot-to-foot

ground

single-foot

Illustration retrieved from OMRON HBF-510 Instruction Manual
Four healthy subjects (one woman)

Paced respiration (0.1 Hz) to cause hemodynamics changes

Measurement cases

foot-to-foot

single-foot

Illustration retrieved from *OMRON HBF-510 Instruction Manual*
Digital filtering

Synchronized ECG, IPG and PPG signals

Detection of R-waves and extraction of RR intervals

RR interval

Estimation of T_{D1} within RR interval

Estimation of PAT

T_R

T_{D1}

1-D median filtering

Evaluation of relation
Detection of R-waves and extraction of RR intervals

Digital filtering

Synchronized ECG, IPG and PPG signals

ECG

IPG

PPG

RR interval

Estimation of T_{D1} within RR interval

Estimation of PAT

1-D median filtering

Evaluation of relation

T_{R}

T_{D1}
Digital filtering

 Detection of R-waves and extraction of RR intervals

 RR interval

 Estimation of T_{D1} within RR interval

 Estimation of PAT

 1-D median filtering

 Synchronized ECG, IPG and PPG signals

 ECG

 IPG

 PPG

 T_R

 T_{D1}
Signal Processing

Digital filtering
- ECG
- IPG
- PPG

Synchronized ECG, IPG and PPG signals

Detection of R-waves and extraction of RR intervals
- RR interval

Estimation of T_{D1} within RR interval

Estimation of PAT
- T_R
- T_{D1}

1-D median filtering

Evaluation of relation
Digital filtering

Synchronized ECG, IPG and PPG signals

Detection of R-waves and extraction of RR intervals

RR interval

Estimation of T_{D1} within RR interval

Estimation of PAT

1-D median filtering

Evaluation of relation
Results:

Example of the signals

Foot-to-foot case

Single-foot case
Results:

Example of the estimated PAT

Foot-to-foot case

Single-foot case
Results:

Foot-to-foot case

Single-foot case
Results:

example of estimated PAT

Foot-to-foot case

Single-foot case
Foot-to-foot case

Single-foot case
Results: foot-to-foot vs. single-foot

Data represent mean ± SD
Results: foot-to-foot vs. single-foot

Data represent mean ± SD
Results:

Boxplot of the absolute values of PAT

Legend:
- Red: Single-foot IPG
- Blue: Foot-to-foot IPG
- Green: PPG
Results:

Boxplot of the absolute values of PAT.
Results:

Boxplot of the absolute values of PAT 12/14
Custom-made bioimpedance unit integrated into body composition scales
Conclusions

– PAT can be estimated by using IPG and ECG sensors, which are integrated into body composition scales;
– PAT evaluated by the method introduced in this study correlates with PPG-based PAT;
– single-foot and foot-to-foot PAT_{IPG} slightly differs.

Future directions

– testing of the custom-made system;
– development of the algorithm for the calculation of PAT;
– a wider group of subjects with different health status.
This work was partly supported by the projects “Promotion of Student Scientific Activities” (VP1-3.1-ŠMM-01-V-02-003) from the Research Council of Lithuania and CARRE (No.611140) funded by the European Community 7th Framework Programme.
Thank you for your attention