

FP7-ICT-2013-10 ICT-WP-2013.5.1 Personalized health, active ageing, and independent living

Capturing Scientific Knowledge of Medical Risk Factors

Allan Third, Eleni Kaldoudi, George Gkotsis, Stefanos Roumeliotis, Kalliopi Pafili, John Domingue

1st International Workshop on Capturing Scientific Knowledge Palisades, New York, 7th October 2015

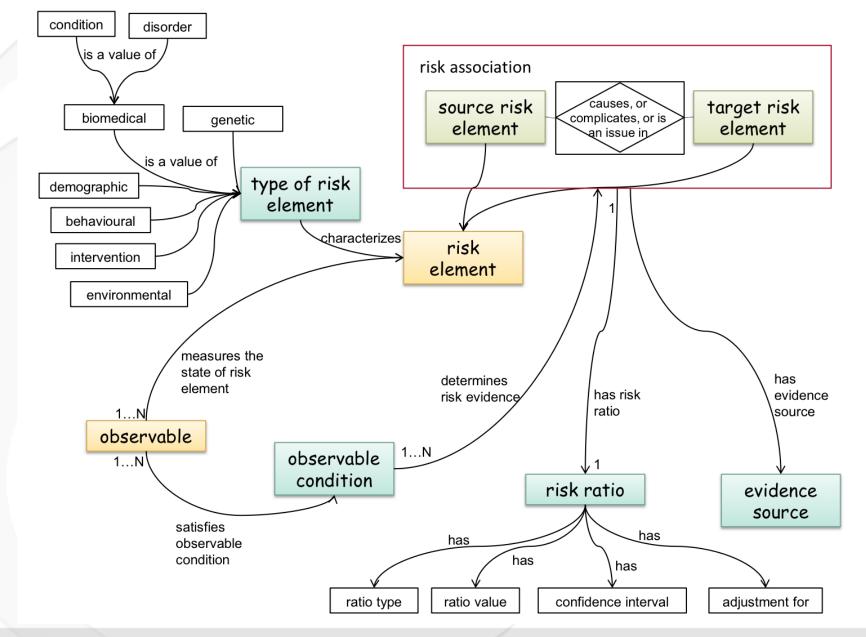
What are we doing & why?

- A model of evidence-based medical risk
- Clinical research identifies risk factors
 - "If you smoke, your risk of X is increased by..."
- Used to advise patients on
 - Lifestyle changes
 - Risk mitigation
 - Chronic disease management

Existing risk prediction tools

- Hardcoded statistical models
 - Input age, height, weight, some lifestyle factors...
 - Output a single probability & some general recommendations
- Less informative
- Not extensible
 - New science: new model/tool

- Cardiorenal patients
 - Elevated risks of comorbidities
- Risk calculation & decision support
 - Based on at-home monitoring
- Scientific contribution:
 - Seneralised & extensible risk model
 - Capable of fine-grained & hypothetical reasoning



A sample risk factor association

- Diabetes causes ischemic heart disease
 - Diabetic and male: 2.82 x more likely to develop IHD
 - Confidence interval 2.35 3.38
 - Source: Pubmed ID 24859435
 - Diabetic and female: 2.16 x more likely to develop IHD
 - Confidence interval 1.82 2.56
 - Source: Pubmed ID 24859435
- Combine en masse for extensible risk calculation

Types of risk factor

- Environmental
- Demographic
- Genetic
- Behavioural
- Biomedical

Observables

- How do we know when a risk factor applies to a patient?
 Who fits the population criteria in the evidence?
- Observations of a patient
 - Manual or automatic
- Logical expression describing study population
 - E.g., "sex = "female" and diabetes = "diagnosed""

Capturing risk factors

- Clinician-defined literature search methodology
- Identify quantified risk factors & relevant population
- Custom (Drupal) forms reflecting model
 Automatically convert into RDF and store
- Review
- Repeat..

How did it go?

- 93 risk factor associations
- Based on 45 different risk elements
- [Pause for valiant attempt at a demo]

How did it go?

- Relatively straightforward
- Identifying risk factors sometimes tricky
- Familiar language& natural model for clinicians
- Inconsistencies in clinical writing ("risk factor")
- Biggest issue:
 - Logical expressions for grounding in observables

Observable expressions

- "Diagnosed AND/OR between 8% and 9%"
- In clinical literature but not easily made machine-readable
- OR not in clinical literature
 Tacit knowledge in clinical process
- "?diabetes = "diagnosed" | | (?HbA1c > 8 && ?HbA1c < 9)"</p>

Lessons & future work

- "Hidden" clinical knowledge
- Standard clinical terminology hides some generalities
 "Positive" risk factors
- Ongoing work on decision support/visualisation
- Easy to generalise to other areas of medicine
 Outside medicine?
- Curation

acknowledgment

**** * * ***

work funded under project CARRE: Personalized patient empowerment and shared decision support for cardiorenal disease and comorbidities

co-funded by the
European Commission under the
Information and Communication Technologies (ICT)
7th Framework Programme
Contract No. FP7-ICT-2013-611140

CARREhttp://www.carre-project.eu/

cite as

A. Third, E. Kaldoudi, G. Gotsis, S. Roumeliotis, K. Pafili, J. Domingue, Capturing Scientific Knowledge on Medical Risk Factors, K-CAP2015: 8th International Conference on Knowledge Capture, ACM, Palisades, NY, USA, Oct. 7-10, 2015

http://www.isi.edu/ikcap/sciknow2015/#papers

