Data mining, management and visualization in large scientific corpus

HUI WEI

Data collection

Some digital libraries did not supply APIs We use raw PDF docs as input

Data collection

- 1. to extract basic information of a paper such as authors, title, abstract sentences, doi
- 2. to extract references
- 3. to extract standard keywords and their frequency from each paper.

Text mining

- Use Jape rules to define "Macros" to find important markers, such as"DOI", "year", "abstract" tags.
- Use Annie NE Transducer and Gazetteer look up person names like "author".
- Use Gate ontology Gazetteer and Jape rules look up Computer Graphic terms in the content.

Se	elected Processing resources -	
!	Name	Туре
	📀 Document Reset PR	Document Reset PR
	ANNIE English Tokeniser	ANNIE English Tokeniser
	ANNIE Sentence Splitter	ANNIE Sentence Splitter
	ANNIE POS Tagger	ANNIE POS Tagger
	📏 morph	GATE Morphological analyser
	💐 DivRootG	Onto Root Gazetteer
	N DivFlexG	Flexible Gazetteer
	aNNIE Gazetteer	ANNIE Gazetteer
	🎨 Annie NE	ANNIE NE Transducer
	네프 JapeCasa	JAPE Transducer

Text mining

ACM Reference Format

Zhu, J., Lee, Y., Efros, A. 2014. AverageExplorer: Interactive Exploration and Alignment of Visual Data Collections, ACM Trans. Graph. 33, 4, Article 160 (July 2014), 11 pages. DOI = 10.1145/2601097.2601145

Abstract This paper proposes an interactive framework that allows a user to rapidly explore and visualize a large image collection using the medium of average images. Average images have been gaining popularity as means of artistic expression and data visualization, but the creation of compelling examples is a surprisingly laborious and manual process. Our interactive, real-time system provides a way to summarize large amounts of visual data by weighted average(s) of an image collection, with the weights reflecting user-indicated importance. The aim is to capture not just the mean of the distribution, but a set of modes discovered via interactive exploration. We pose this exploration in terms of a user interactively "editing" the average image using various types of strokes, brushes and warps, similar to a normal image editor, with each user interaction providing a new constraint to update the average. New weighted averages can be spawned and edited either individually or jointly. Together, these tools allow the user to simultaneously perform two fundamental operations on visual data: user-guided clustering and user-guided alignment, within the same framework. We show that our system is useful for various computer vision and graphics applications. CR Categories: I.3.8 [Computer Graphics]: Applications-; Keywords: big visual data, average image, data exploration Links: DL PDF

References

AGARWALA, A., DONTCHEVA, M., AGRAWALA, M., DRUCKER S., COLBURN, A., CURLESS, B., SALESIN, D., AND COHEN. 160:10 . J.-Y. Zhu et al. ACM Transactions on Graphics, Vol. 33, No. 4, Article 160, Publication Da ANGELOVA, A., ABU-MOSTAFAM, Y., AND PERONA, P. 2005. Pruning training sets for learning of object categories. In CVPR. BALCAN, M.-F., AND BLUM, A. 2008. Clustering with interactive feedback. In Algorithmic Learning Theory, Springer, 316-328. BELHUMEUR, P. N., JACOBS, D. W., KRIEGMAN, D. J., AND KUMAR, N. 2011. Localizing parts of faces using a consensus of exemplars. In CVPR. BERG, T., AND BERG, A. 2009. Finding iconic images. In 2nd Workshop on Internet Vision. BERG, T. L., BERG, A. C., AND SHIH, J. 2010. Automatic attribute discovery and characterization from noisy web data. In ECCV.

1	bstractSentenceTag	
1	AbstractTag	

ACMFormatTag

AuthorTag AuthorYearTag

CategoriesTag

IntroductionTag

KeywordsSentenceTag

KeywordsTag

DoiTag

Lookup PaperAuthorTag

PaperTitleTag

PaperYearTag

RefAuthorTag

RefAuthorsTag RefStartTag

RetTag RetTitleTag

RefYearTag Sentence SentenceCgTag SpaceToken

Split Token ✓ cgTag

Figure 1. Metadata Extraction

Keywords onto

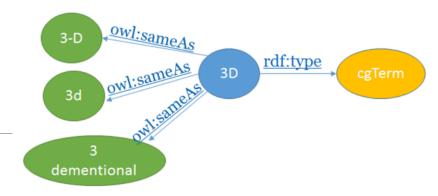
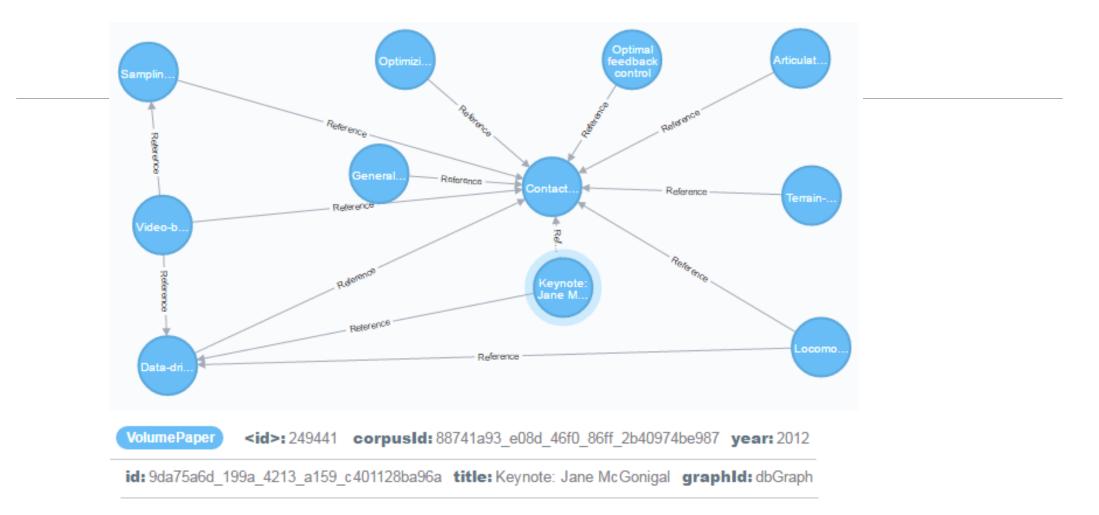
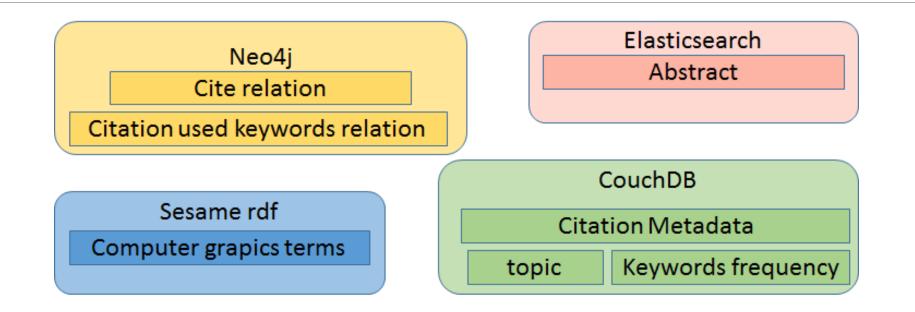
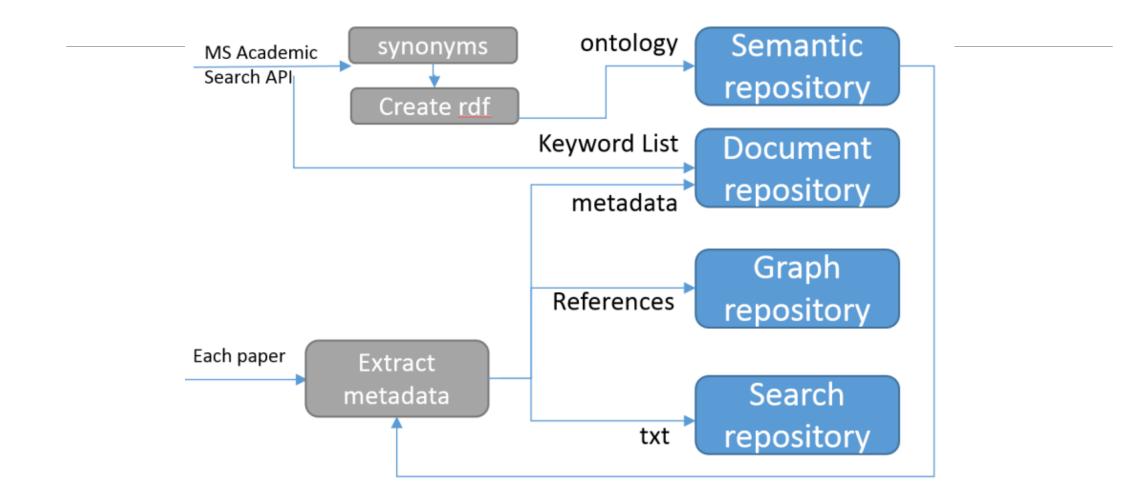



Figure 2. Graph Model


rdf:type rdf:type	owl:Class
rdf:type	
runtype	rdfs:Class
rdf:type	rdfs:Resource
rdfs:subClassOf	">http://www.DIV.org/Divdom/1#CG>
rdfs:subClassOf	rdfs:Resource
rdfs:subClassOf	owl:Thing
rdf:type	<http: 1#cg="" divdom="" www.div.org=""></http:>
	rdf:type rdf:s:subClassOf rdfs:subClassOf rdfs:subClassOf rdf:type rdf:type

Data repositories

Graph repository


Data repositories

Data is managed in 4 NoSql repositories

Data repositories

Data distribution and system workflow

Data visualization

Topic river visualization

Thanks

hui.wei@beds.ac.uk