

Multimodal Unobtrusive Devices for Chronic Disease Monitoring

V. Marozas¹, S. Daukantas¹, A. Petrėnas¹, A. Sološenko¹, D. Stankevičius¹, B. Paliakaitė¹, D. Jegelevičius¹, A. Lukoševičius¹, E. Kaldoudi²

¹Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania

² School of Medicine, Democritus University of Thrace, Alexandroupoli, Greece

COST EMF-MED Workshop on Vagus Nerve Stimulation Warsaw, 16 February 2017

- Motivation chronic diseases
- Promises of vagus nerve stimullation in treatment of atrial fibrillation
- 2 devices EU FP7 project "CARRE" partial results
 - Series Wrist-worn device for continuous monitoring
 - Solution Multiparametric weight scales for intermittent monitoring
- Summary

Motivation: chronic diseases

- Aging of the population increases prevalence of chronic diseases
 - chronic kidney disease 13 % over the world
 - Atrial fibrillation (AF) 2 % of general population & > 6% after 70 years of age
 - peripheral arterial disease (PAD) 20 % over 70 years of

age

SOURCE: United Nations Population Fund

Motivation: a new kind of atrial fibrillation therapy

- Current therapy in AF patients catheter ablation
- New kind of AF therapy transcutaneous electrical stimulation of vagus nerve*

Stavrakis S., et. al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. *J Am Coll Cardiol*. 2015 Mar 10;65(9):867-75.

A noninvasive approach to treat the initial phase of atrial fibrillation

"Low-level tragus stimulation can reverse atrial remodeling and inhibit AF inducibility, suggesting a potential noninvasive treatment of AF"

Yu L, Scherlag BJ, Li S, et al. Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: a noninvasive approach to treat the initial phase of atrial fibrillation. Heart Rhythm 2013;10: 428–35.

Solution to prevent AF?

How to continuosly monitor AF in unobtrusive way?

Medical background – AF heart arrhytmia

Normal rhythm

Regular ventricular contractions

Regular atrial contractions (P waves)

Atrial fibrillation

Irregular ventricular contractions

Continuous atrial activity (f waves)

AF detection

Only prolonged AF can be detected with standard 12-lead electrocardiogram (ECG).

Self-terminating paroxysmal AF is identified with 24-hour Holter monitoring.

The major drawback is the adhesive electrodes (possible allergy) and the connecting wires (discomfort), eventually leading to premature termination of recording.

Calkins et al. 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation. Journal of Interventional Cardiac Electrophysiology, 33(2), 2012. – p. 171-257.

Solution for unobtrusive monitoring

Unobtrusive optical technology – photoplethysmography (PPG) – measures light absorption changes in the skin due to pulsatile blood flow.

Similarly to ECG, the peaks in the PPG signal represent ventricular contractions, allowing to compose pulse-to-pulse (*PP*) interval series.

Aim of the study

Preliminary studies showed that PPG technology is suitable for AF detection, employing the built-in camera of a smartphone.

Is PPG-based AF detection reliable in long-term monitoring?

The aim - to investigate the feasibility of long-term monitoring using wrist-worn device, capable of acquiring PPG.

Wrist worn device: hardware

- Sensors:
 - 🍫 4 ch. PPG
 - 🏷 1 lead ECG
 - 🔖 3 ch. accelerometer
 - altitude (for stairs climbing detection)
 - capacitive sensor for motion artefacts mitigation
- Hardware:
 - b main component ARM Cortex-M4 μPr + BLE4.0 transiver in nRF52832
- Main functions:
 - scientific instrument for multimodal long term physiological data acquisition
 - ✤ algorithms for real-time and offline paroxysmal AF detection

1st prototype 2nd prototype 3rd prototype

Wrist worn device: prototype v3

Entropy based AF detection algorithm*

AF is detected in a sliding window of just 8 heart beats

Due to low-complexity structure achieved, heart rhythm analysis-based algorithm for paroxysmal atrial fibrillation detection can be implemented in a low-power device for prolonged monitoring applications.

*Petrenas, A. et. al., L. Low-complexity detection of atrial fibrillation in continuous long-term monitoring // Computers in biology and medicine. 2015, vol. 65, p. 184-191.

Can ECG-based algorithm be used for PPG-based AF detection?

Wrist-worn device: signals

Wrist-worn device: operation

Operation:

3-axis accelerometer applied to identify motion
 pulse-to-pulse (PP) intervals extraction from motion-free PPG
 AF detection based on intervals irregularity

Study population and data

The study was approved by Kaunas Region Biomedical Research Ethics Committee (No. BE-2-20).

Study participants were involved at Kulautuva Rehabilitation Hospital of Kaunas Clinics, Lithuania.

This resulted in 86.8 hours of data with AF and 85.4 hours without AF.

Methods	Electrocardiogram		Photoplethysmogram	
	Sensitivity, %	Specificity, %	Sensitivity, %	Specificity, %
Sarkar et al. (2008)	99.9	81.3	99.9	78.9
Dash et al. (2009)	100	64.3	100	66.2
Lake et al. (2011)	100	82.2	100	80.4
Petrėnas et al. (2015)	99.4	89.9	99.9	91.5

Detection of self-terminating AF

Wrist worn device in AF detection

Results:

- AF detection
- sensitivity and specificity of PPG-based AF detector reached 99.9% and 91.5%
- berformance comparable to that obtained using ECG

Multiparametric weight scales

- Peripheral artery disease is associated with the increased arterial stiffness
- Arterial stiffness can be assessed by either pulse wave velocity or pulse arrival time (PAT)
- Operator dependence restricts periodic assessment of arterial stiffness in long-term self-monitoring by target patients

Can arterial stiffness be monitored in unobtrusive way, i.e. operatorless?

Arterial stiffness assesment

- Arterial stiffness can be characterized by the propagation of the pulse pressure wave (PPW) along the arterial tree.
- Pulse arrival time (PAT) the time interval between the Rwave of the QRS complex and the particular point in the PPW.

- Impedance plethysmography (IPG) to determine changing tissue volumes (e.g. blood)
- ECG and IPG electrodes integrated into unobtrusive devices (e.g. bathroom scales)

Solution (2)

Multiparametric Weight Scale: functionality

- Functionality:
 - 🏷 body weight
 - biosignals: I,II,III ECG leads, 2 IPG ch., balistocardiogram, temp & humidity
 - WiFi: automatic sending of datafile to a remote server & receiving feedback
 - Solution Watlab GUI / server algorithms for:
 - body fluids bioimpedance parameters measurement
 - atrial fibrillation arrhythmia detection
 - arterial stiffness pulse arrival time estimation
 - ultrashort heart rate variability paameters
 - slow (guided) breathing test

Multiparametric weight scale: hardware

- 3 microcontrollers
 4 LPC1765, nRF52832, ESP8266
- Biosignals front-ends
 ADS1294R, AFE4300
 ADS1247
- Micro SD card
- WiFi & Low energy
 BlueTooth

1st prototype

2nd prototype

Multiparametric weight scale : prototype v2

Pulse arrival time: validation

*Paliakaite B. et al. Estimation of pulse arrival time using impedance plethysmogram from body composition scales // *Sensors Applications Symposium (SAS), 2015 IEEE*, vol., no., pp.1-4, 13-15 April 2015 doi: 10.1109/SAS.2015.7133577

**Paliakaitė B. et al. Assessment of Pulse Arrival Time for Arterial Stiffness Monitoring on Body Composition Scales // Computers in Biology and Medicine, special issue: Self-monitoring systems for personalized health-care and lifestyle surveillance, available online April 22, 2016.

GUI: main window

Arterial stiffness analysis window

Two devices were developed that potentially could be applied for monitoring in unobtrusive way the effectiveness of electrical VNS-based treatment:

- Wrist-worn device for long-term monitoring and closed loop treatment of paroxysmal atrial fibrillation
- Multiparametric scales for home based monitoring of efficacy of VNS based treatment in peripheral artery disease patients.

Acknowledgement

This research was funded by the grants from the Research Council of Lithuania (No. MIP088/15), and the European Commission Framework Programme 7 (No. 611140).

Thank you

Ready to collaborate experts in signal processing, sensors, embedded systems Biomedical Engineering Institute Kaunas University of Technology Lithuania vaidotas.marozas@ktu.lt