

FP7-ICT-611140 CARRE

Project co-funded by the European Commission
under the Information and Communication Technologies
(ICT) 7th Framework Programme

D.4.1. Semantic Repository Design & Implementation

Z. Deng, G. Gkotsis, A. Third

February 2015

 D.4.1. Semantic Repository

FP7-ICT-61140 page 2 of 31

CARRE Contacts

Project Coordinator: Eleni Kaldoudi kaldoudi@med.duth.gr

DUTH
Democritus University of Thrace

Eleni Kaldoudi kaldoudi@med.duth.gr

OU
The Open University

John Domingue john.domingue@open.ac.uk

BED:
Bedfordshire University

Enjie Liu Enjie.Liu@beds.ac.uk

VULSK:
Vilnius University Hospital Santariskių Klinikos

Domantas Stundys Domantas.Stundys@santa.lt

KTU
Kaunas University of Technology

Arunas Lukosevicius arunas.lukosevicius@ktu.lt

PIAP
Industrial Research Institute for Automation
& Measurements

Roman Szewczyk rszewczyk@piap.pl

Disclaimer

This document contains description of the CARRE project findings, work and products. The authors of this
document have taken any available measure in order for its content to be accurate, consistent and lawful.
However, neither the project consortium as a whole nor the individual partners that implicitly or explicitly
participated in the creation and publication of this document hold any sort of responsibility that might occur as
a result of using its content.

In case you believe that this document harms in any way IPR held by you as a person or as a representative
of an entity, please do notify us immediately.

The content of this publication is the sole responsibility of CARRE consortium and can in no way be taken to
reflect the views of the European Union.

CARRE is a Specific Targeted Research Project partially funded by the European Union,
under FP7-ICT-2013-10, Theme 5.1. “Personalized health, active ageing & independent
living”.

 D.4.1. Semantic Repository

FP7-ICT-61140 page 3 of 31

Document Control Page

Project

Contract No.: 611140

Acronym: CARRE

Title: Personalized Patient Empowerment and Shared Decision Support
for Cardiorenal Disease and Comorbidities

Type: STREP

Start: 1 November 2013

End: 31 October 2016

Programme: FP7-ICT-2013.5.1

Website: http://www.carre-project.eu/

Deliverable

Deliverable No.: D.4.1

Deliverable Title: Semantic repository design & implementation

Responsible Partner: OU – Allan Third

Authors: Z. Deng, G. Gkotsis, A. Third

Input from: OU, BED, KTU

Peer Reviewers: George Drosatos (DUTH), Vaidotas Marozas (KTU), Rafal Kloda (PIAP)

Task:
T.4.1. Scalable semantic repository design and implementation &
T.4.2. Data privacy and security issues

Task duration: 7 months: 1 July 2014 to 28 February 2015

Work Package: WP4: Data Enrichment, correlation and interlinking

Work Package Leader: OU – Allan Third

Due Date: 28 February 2015

Actual Delivery Date: 3 March 2015

Dissemination Level: PU

Nature: P

Files and format: Deliverable report: 1 pdf file

Software: 1 archive containing the RESTful API web application

Version: 08

Status: Draft

 Consortium reviewed

 WP leader accepted

 Coordinator accepted

 EC accepted

http://www.carre-project.eu/

 D.4.1. Semantic Repository

FP7-ICT-61140 page 4 of 31

Table of Contents

Executive Summary ... 7

Terms and Definitions ... 8

1. Introduction .. 9

2. Semantic Repository Architecture ... 10

3. RDF management .. 11

3.1. RDF graphs ... 11

3.1.1. Private graphs .. 11

3.1.2. Public graph ... 12

3.2. Accessing RDF through SPARQL ... 12

3.3. Performance .. 13

4. Account authentication ... 15

5. CARRE RESTful API .. 18

5.1. CARRE services.. 18

5.2. Dereferenceable URIs ... 21

5.3. Code Metrics ... 22

6. Data privacy and security issues ... 23

Annex 1 RESTful Swagger documentation ... 25

Annex 2 Repository RESTful API Software... 30

What is CARRE Repository RESTful API? .. 31

Access .. 31

Download ... 31

CARRE Repository RESTful API is Open Source ... 31

List of Figures

Figure 1. CARRE repository internal architecture. .. 10

Figure 3. Comparison of Query Mixes per Hour for different RDF databases [Morsey et al.] 14

Figure 4. CARRE's login form. ... 15

Figure 5. CARRE's registration form. .. 15

Figure 6. CARRE's login authentication and authorisation workflow. ... 16

Figure 7. CARRE's logoff workflow.. 17

Figure 8. RESTful API homepage ... 19

Figure 9. UserProfile method invocation. .. 20

Figure 10. Screenshot of the Activity Digest integrated in the Mac OS calendar application. 21

Figure 11. An example webpage showing the output of the dereferenceable URIs. 21

Figure 12. CARRE security technology stack.. 23

 D.4.1. Semantic Repository

FP7-ICT-61140 page 5 of 31

List of Tables

Table 1. Code metrics of application constructor. ... 22

Table 2. Code metrics of CARRE services implementation. ... 22

Table 3. Code metrics of Virtuoso connection implementation. .. 22

 D.4.1. Semantic Repository

FP7-ICT-61140 page 6 of 31

Document Revision History

Version Date Modifications Contributors

v01 3 February 2015 new content – outline G. Gkotsis

v02 12 February 2015 content in sections 2,3 & 4 G. Gkotsis

v03 13 February 2015 content in section 5 G. Gkotsis

v04 20 February 2015 minor modifications - offline exporting of the
document for formatting

G. Gkotsis

v05 21 February 2015 Content in section 6 from BED.

Minor modifications.

A. Third, Z. Deng

v06 27 February 2015 Comments from reviewers, formatting &
presentation

G. Gkotsis

v07 2 March 2015 Comments from reviewers G. Gkotsis, A. Third

v08 3 March 2015 Editing towards layout uniformity E. Kaldoudi, G. Drosatos

 D.4.1. Semantic Repository

FP7-ICT-61140 page 7 of 31

Executive Summary

This deliverable reports on CARRE’s semantic repository design and implementation (D.4.1). CARRE’s
repository constitutes the backend of CARRE’s overall architecture and is responsible for storing both public
and private (sensor) data in an RDF format. It also realises a set of components that allow depositing and
accessing this data for the CARRE applications under development. The report discusses the design and
implementation decisions towards the above, taking into account various factors such as performance, security
and robustness. The source code is also released (open source) as part of this deliverable in order to
complement the information provided in this document.

About CARRE

CARRE is an EU FP7-ICT funded project with the goal to provide innovative means for the management
of comorbidities (multiple co-occurring medical conditions), especially in the case of chronic cardiac and renal
disease patients or persons with increased risk of such conditions.

Sources of medical and other knowledge will be semantically linked with sensor outputs to provide clinical
information personalised to the individual patient, to be able to track the progression and interactions of
comorbid conditions. Visual analytics will be employed so that patients and clinicians will be able to visualise,
understand and interact with this linked knowledge and take advantage of personalised empowerment services
supported by a dedicated decision support system.

The ultimate goal is to provide the means for patients with comorbidities to take an active role in care
processes, including self-care and shared decision-making, and to support medical professionals in
understanding and treating comorbidities via an integrative approach.

 D.4.1. Semantic Repository

FP7-ICT-61140 page 8 of 31

Terms and Definitions

The following are definitions of terms, abbreviations and acronyms used in this document1.

Term Definition

CARRE
repository

The backend major component of the CARRE platform responsible for storing, indexing
and accessing the public and private RDF data.

Flask A lightweight web application framework written in Python.

Linked Data A method of publishing structured data so that it can be interlinked and become more
useful.

Linked Open
Data cloud

A collection of Linked Open Data repositories interconnected and publicly accessible
through Semantic Web Technologies.

RDF A standard model for data interchange on the Web.

RESTful API A Web API that adheres to the REpresentational State Transfer architectural constraints.

SPARQL An RDF query language.

Swagger A specification and complete web application framework implementation for describing,
producing, consuming, and visualizing RESTful web APIs (collections of web resources)
and their implementations as web services.

Triple A statement in the subject-predicate-object expression.

URI A string of characters used to identify a name of a resource.

URL A specific character string that constitutes a reference to a resource.

Virtuoso A middleware and database engine hybrid that combines the functionality of a traditional
RDBMS, ORDBMS, virtual database, RDF, XML, free-text, web application server and file
server functionality in a single system.

Web API An Application Programming Interface accessible on the Web.

1 Terms and definitions are taken from W3C and Wikipedia.

 D.4.1. Semantic Repository

FP7-ICT-61140 page 9 of 31

1. Introduction

This document presents the semantic repository developed for managing large volumes of data in the form of
RDF triples. The CARRE repository acts as the central point of information storage for all CARRE applications.
It conforms to the principles of the Semantic Web and the guidelines of Linked Data. The Linked Data
guidelines can be summarised as follows2:

 Use URIs as names for things

 Use HTTP URIs, so that people can look up those names.

 When someone looks up a URI, provide useful information, using the standards (RDF*3, SPARQL)

 Include links to other URIs, so that people can discover more things.

Information stored in the CARRE repository consists of “RDF triples”. RDF is a standard format for representing
semantic data on the Web; an item of RDF data is a triple, which corresponds to a statement of the form
“subject predicate object”. Each term is a URI, often drawn from a standard vocabulary or ontology, making it
easy to link triples from different sources – to allow Linked Data. RDF can be accessed through a SPARQL
endpoint: SPARQL is a query language, much like SQL in syntax. The triples stored in the CARRE repository
are either public or private. For private data, data privacy and security mechanisms have been deployed.

In addition to the above “de facto” standards, we have implemented and published the following web services:

 A CARRE-specific Web API used by CARRE applications that have been prescribed and undergoing
development in currently active Work Packages.

 Dereferenceable URIs, that allow the seamless access and consumption of CARRE-generated data.

 Authentication and authorization services for CARRE users and applications.

Section Error! Reference source not found. gives an overview of the semantic repository architecture.
ection 3 discusses how we have used and configured our database engine (Virtuoso) for managing all of the
RDF data. Section 4 presents how the CARRE users and applications can manage their accounts with respect
to CARRE’s repository. Section 5 presents CARRE’s RESTful API and section 6 discusses security and
privacy issues that will be taken into account throughout the development of CARRE platform. Finally, Annex
1 presents the RESTful API’s specification that can be used by swagger clients.

2 http://www.w3.org/DesignIssues/LinkedData.html
3 http://www.w3.org/RDF/

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/RDF/

 D.4.1. Semantic Repository

FP7-ICT-61140 page 10 of 31

2. Semantic Repository Architecture

Figure 1 illustrates the architecture of the CARRE repository and highlights the various components realised.
Starting from left to right, CARRE applications and users are external to the CARRE repository and the primary
clients of the repository’s services. CARRE users are the users that are connecting on the Backend of the
repository initially for creating an account. The Authentication component is responsible for certifying the users
for the CARRE applications. After a CARRE application has identified and verified a user, it has the required
authentication credentials to connect directly to the RESTful API. The RESTful API component exposes a
number of CARRE-related services that allow accessing RDF data, both public and private. A dedicated
component is built to implement dereferenceable URIs on top of the RDF repository.

Communication with the RDF repositories both by the API and where relevant the public LOD cloud is
facilitated by the public and authenticated SPARQL endpoints accordingly. Finally, the actual RDF repositories
are developed using the Virtuoso engine. The public and private RDF data are separated logically; however,
they are both implemented under the same Virtuoso server with respect to the Linked Data principles.

Figure 1. CARRE repository internal architecture.

The sections that follow present in more detail the implementation details for each component.

 D.4.1. Semantic Repository

FP7-ICT-61140 page 11 of 31

3. RDF management

Storage and management of RDF data is implemented using the open source version of Virtuoso Universal
Server. More specifically, the OU team has installed the latest version of Virtuoso 64 (6.4) on a 6.6 CentOS
(Santiago) machine with 8GB of RAM and a dual core 2.50GHz Xeon with 30GB expandable Hard Disk space.
Virtuoso is both a database and a middleware engine5.

From a database perspective, it is implemented following the relational database management system. Hence
Virtuoso is fully SQL-92 compliant and supports several of the SQL 200n features. At the same time, Virtuoso
can also be considered an XML and RDF database. It implements protocols that allow the management of
RDF triples (hence “universal”) and allows loading of N3, Turtle, and RDF/ XML files. To achieve the above,
the basic model of Virtuoso is an extension of the object-relational models. Furthermore, as a database,
Virtuoso supports entity and referential integrity. Finally, Virtuoso offers a number of client libraries and drivers
that permit database connection with a number of different solutions (e.g. ODBC6, JDBC7 and ADO.NET8).

As a middleware engine, Virtuoso follows a component-based architecture and allows the installation of
components that are connected either locally or remotely to its database. These components vary, from
services very tightly connected to its database (e.g. remote execution of stored procedures) to web services
(e.g. SOAP, WSDL, and UDDI) and web applications (e.g. Wiki, AddressBook and Weblog).

In our approach, we exploit the following mechanisms of the Virtuoso server:

 We use the relational schema to programmatically create and register CARRE user accounts. Where
needed, we made minor modifications to various stored procedures.

 We have installed the OAuth authentication module provided by Virtuoso in order for applications to
execute user-level queries based on corresponding user/graph permissions.

 We use the RDF repository to implement the CARRE vocabulary defined in previous deliverables.
Hence the RDF statements populated together with the CARRE vocabularies constitute a complete
solution for the CARRE repository.

We discuss below details concerning the setup and configuration of the RDF repository.

3.1. RDF graphs

Virtuoso allows the storage of RDF triples under an arbitrary number of “named graphs”. A named graph,
identified by a URI, can contain a set of RDF triples which can be stored and queried independently. In effect,
each triple is extended to become a ‘quad’, with the first field being the graph name9. Triples need only be
unique within a graph. The SPARQL standard allows the use of graph names to construct complex queries
limited to particular graph(s) or drawing data from multiple graphs together. Hence Virtuoso allows accessing
the content of these graphs through SPARQL queries.

3.1.1. Private graphs

Virtuoso’s named graphs support graph-level security10. That is to say, access to the triples within a particular
graph can be restricted to a certain user or users - an important factor when dealing with confidential health-
related data. Each user in the CARRE repository is given a unique private graph after her username in which

4 http://virtuoso.openlinksw.com/
5 http://virtuoso.openlinksw.com/virt_faq/
6 http://support.microsoft.com/kb/110093
7 http://www.oracle.com/technetwork/java/javase/jdbc/index.html#corespec40
8 https://msdn.microsoft.com/en-us/library/aa286484.aspx

9 This is the reason why Virtuoso is also described as a quad store.

10 http://docs.openlinksw.com/virtuoso/rdfgraphsecurity.html

http://virtuoso.openlinksw.com/
http://virtuoso.openlinksw.com/virt_faq/
http://support.microsoft.com/kb/110093
http://www.oracle.com/technetwork/java/javase/jdbc/index.html#corespec40
https://msdn.microsoft.com/en-us/library/aa286484.aspx
http://docs.openlinksw.com/virtuoso/rdfgraphsecurity.html

 D.4.1. Semantic Repository

FP7-ICT-61140 page 12 of 31

all data relating to that user is stored. More specifically, the setup of CARRE’s RDF store was implemented as
follows:

1. DB.DBA.RDF_DEFAULT_USER_PERMS_SET ('nobody', 0);

All graphs are declared private for all users. Hence, if a user or application queries a graph without providing
the correct credentials, the result set is empty.

When a new user registers, the following actions take place:

2. DB.DBA.USER_CREATE ('JohnSmith', 'PASSWORD');

A new user is created using the above command. Usernames must be unique. A password can change using
the following command:

USER_SET_PASSWORD('JohnSmith', 'NEWPASSWORD);

3. GRANT SPARQL_UPDATE to “JohnSmith”;

The SPARQL_UPDATE role is by default assigned to all users. This is needed for step #4.

4. DB.DBA.RDF_GRAPH_USER_PERMS_SET ('https://carre.kmi.open.ac.uk/users/JohnSmith',
'JohnSmith', 3);

This last step allows the user to have read-write permission on her private graph. Notice that all private/user-
defined named graphs are using the following prefix:

https://carre.kmi.open.ac.uk/users/

Therefore, the private graph for user JohnSmith has the URI:

https://carre.kmi.open.ac.uk/users/JohnSmith

Note that all user graphs are assigned an HTTPS URI, and therefore all HTTP interactions with a user graph
or its contents are encrypted, as well as limited to authenticated users with the appropriate permissions.

3.1.2. Public graph

As already discussed, CARRE’s RDF repository stores public data. This data is accessible to all users, both
registered and anonymous. To address this need, all of the data are stored under a common graph, which we
have defined as the “default graph” of Virtuoso. This is done by setting this option within the virtuoso.ini
configuration file:

DefaultGraph = https://carre.kmi.open.ac.uk/public

A default graph in Virtuoso is a special graph since it allows users to execute SPARQL queries within this
graph without providing the graph name. Finally, in order to make this default, public graph accessible to all
users with read-only permission, the following command was issued:

DB.DBA.RDF_GRAPH_USER_PERMS_SET ('https://carre.kmi.open.ac.uk/public', 'nobody', 1)

A special set of users-applications are granted with write permissions on the public graph. This set refers to
users administered by CARRE application developers in order to allow them to deposit RDF statements onto
the public graph. For instance an “educational data aggregator user-application” may issue the following
SPARQL query, as follows:

INSERT DATA

{

 <http://example.org/subject> <http://example.org/predicate> <http://example.org/object>

}

3.2. Accessing RDF through SPARQL

Having set up the public and private graphs, a developer/application may access the repository through
SPARQL queries. Virtuoso SPARQL can be used through any SQL call level interface (CLI) supported by

https://carre.kmi.open.ac.uk/users/
https://carre.kmi.open.ac.uk/users/JohnSmith

 D.4.1. Semantic Repository

FP7-ICT-61140 page 13 of 31

Virtuoso (i.e., ODBC, JDBC, OLE-DB, ADO.NET, XMLA). Prefixing a SQL query with the keyword "sparql" will
invoke SPARQL instead of SQL, through any SQL client API. We illustrate below a representative list of
CARRE-related SPARQL queries:

 Inserts a triple into the private graph of user.

INSERT IN <http://carre.kmi.open.ac.uk/users/JohnSmith> {
<http://carre.kmi.open.ac.uk/ontology/sensors.owl#provider226866082>
<http://carre.kmi.open.ac.uk/ontology/sensors.owl#hasWeight> 65.9451 }

 Removes all triples from user’s private graph.

WITH <https://carre.kmi.open.ac.uk/users/JohnSmith> DELETE { ?subject ?predicate ?object }
WHERE { ?subject ?predicate ?object}

 Selects all triples from user’s private graph.

SELECT ?subject ?predicate ?object FROM <https://carre.kmi.open.ac.uk/users/JohnSmith>
WHERE { ?subject ?predicate ?object }

 Selects daily step count from user’s private graph since January 1st, 2015.

SELECT max(?v1) as ?value xsd:date(?d) as ?d FROM
<https://carre.kmi.open.ac.uk/users/JohnSmith> WHERE

{

 ?subject ?predicate ?object.

 ?subject <http://carre.kmi.open.ac.uk/ontology/sensors.owl#has_date> ?d1.

 ?d1 <http://carre.kmi.open.ac.uk/ontology/sensors.owl#has_value> ?d.

 ?subject <http://carre.kmi.open.ac.uk/ontology/sensors.owl#has_steps> ?v.

 ?v <http://carre.kmi.open.ac.uk/ontology/sensors.owl#has_value> ?v1.

 FILTER ((xsd:date(?d) >= '20150101'^^xsd:date))

}

GROUP BY xsd:date(?d)

3.3. Performance

CARRE’s repository is implemented with large volumes of data in mind. Virtuoso has been reported in a
number of studies as being robust and scalable. This scalability accounts both performance and the volume
of data that can be stored. The website of the World Wide Web Consortium presents a thorough list of studies
concerning RDF storage and benchmarks11. We highlight some reports around performance aspects of
Virtuoso:

 Volume
According to Virtuoso’s FAQ12 and based on our server’s specifications, CARRE server can store more
than 500M triples. Additionally, if needed, data can be partitioned to multiple servers multiplying the
above limit proportionally to the supplementary servers deployed13.

 Multiple connections
CARRE’s Virtuoso repository is multithreaded for all of its components and can easily support a large
number of clients (i.e. users and/or applications). The most prominent example is the publicly-

11 http://www.w3.org/wiki/RdfStoreBenchmarking
12 http://virtuoso.openlinksw.com/virt_faq/
13 See http://www.openlinksw.com/weblog/oerling/?id=1487 for a more detailed discussion.

http://www.w3.org/wiki/RdfStoreBenchmarking
http://virtuoso.openlinksw.com/virt_faq/
http://www.openlinksw.com/weblog/oerling/?id=1487

 D.4.1. Semantic Repository

FP7-ICT-61140 page 14 of 31

accessible DBpedia SPARQL endpoint14 which serves thousands of requests per day on a single-
node server.

 Performance
A paper published by Morsey et al.15 reports that “Virtuoso outperforms Sesame for all datasets”
(Sesame16 is one of the biggest RDF store competitors). Moreover, in their paper, the authors propose
a novel, pure RDF benchmark suite that can be applied for benchmarking real world data. The results
of their evaluation show that “Virtuoso was clearly the fastest triple store” and was the only one able
to complete all queries before the timeout period. This is also illustrated in Figure 2, where the Query
Mixes per Hour (QMpH - a collection of mixed queries and different parameters) is presented for
different RDF stores, over a dataset of approximately 154M triples. Finally, similar results are reported
earlier by Bizer and Schultz in another paper17.

Figure 2. Comparison of Query Mixes per Hour for different RDF databases [Morsey et al.]

14 http://dbpedia.org
15 M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo. DBpedia SPARQL benchmark–performance assessment with

real queries on real data. In The Semantic Web–ISWC 2011, pages 454–469. Springer, 2011.
16 http://rdf4j.org/
17 C. Bizer and A. Schultz. Benchmarking the performance of storage systems that expose sparql endpoints. World Wide

Web Internet And Web Information Systems, 2008.

 See also http://www.openlinksw.com/weblog/oerling/?id=1484

http://dbpedia.org/
http://rdf4j.org/
http://www.openlinksw.com/weblog/oerling/?id=1484

 D.4.1. Semantic Repository

FP7-ICT-61140 page 15 of 31

4. Account authentication

A user who wishes to create an account and use CARRE services must first register an account for accessing
CARRE’s repository. To accommodate the above, we have extended the sensor data aggregators website18,
which is accessible in the following address:

https://carre.kmi.open.ac.uk/devices

The website prompts the user for his username and password:

Figure 3. CARRE's login form.

New users follow the “Register” link to create a new account:

Figure 4. CARRE's registration form.

The user can then log in to the website and connect their sensor devices to CARRE’s repository (for more
information about this part, the reader may consult D.3.2). In addition to this, the “CARRE devices” website
functions as a Single Sign On (SSO) server that allows users to sign in to CARRE applications. The
authentication and authorisation workflow is illustrated in Figure 5. This workflow implements the OAuth 2.0
“meta protocol” enables secure authentication without the need to, for example, share passwords for every
resource access.

18 Sensor data aggregators are reported in D.3.2.

https://carre.kmi.open.ac.uk/devices

 D.4.1. Semantic Repository

FP7-ICT-61140 page 16 of 31

Figure 5. CARRE's login authentication and authorisation workflow.

1. User initially visits the CARRE application. At this stage, we assume the user is not logged on yet.

2. CARRE application redirects the user to the authentication/Single Sign On component of the CARRE
repository. The redirection URL contains a callback URI in the following format:

https://carre.kmi.open.ac.uk/devices/accounts/login?next=https://carre.application.url/listener

The authentication component checks the host of the callback URI (i.e. carre.application.url) whether it is
listed as a valid host name. If and only if the host is valid, step #3 follows.

3. CARRE authentication checks if user is already logged in (using session data of her browser). If the user
is not logged in, a login box URL is presented (see Figure 3).

4. User successfully logs in (or is already logged in) and receives a redirection url to the carre application.
The redirection URL passes through GET parameters user information the access token of his account.

5. CARRE application receives the token and sends it back to the Authentication module.

https://carre.kmi.open.ac.uk/ws/userProfile?token=TOKEN_VALUE

If the token is valid, a JSON response is produced as follows:

{

 "username": "JohnSmith",

 "graphName": "https://carre.kmi.open.ac.uk/users/JohnSmith",

 "email": "JohnSmith@example.com"

}

When and if the user himself or the CARRE application wishes to logoff the user, the authentication server
must be informed as well. This is done similarly to the logon process, by visiting the following URL:

https://carre.kmi.open.ac.uk/devices/accounts/logout?next=http://carre.application.url/logout

Figure 6 illustrates the logoff process, which is a simplified version of the logon process. The workflow which
is initiated by the application results in logging off the user from all other applications; hence this will only be
used in cases that such thing is needed. For all other cases, CARRE application can choose to close the user’s
session, similarly to any standalone web application.

https://carre.kmi.open.ac.uk/devices/accounts/login?next=https://carre.application.url/listener

 D.4.1. Semantic Repository

FP7-ICT-61140 page 17 of 31

Figure 6. CARRE's logoff workflow.

 D.4.1. Semantic Repository

FP7-ICT-61140 page 18 of 31

5. CARRE RESTful API

The third component developed on top of CARRE’s Virtuoso server constitutes a web service. This application
aims to securely expose a number of CARRE-related methods. These methods are divided into two categories,
which we present separately below.

5.1. CARRE services

This application is a RESTful API developed using Flask19, which is a Python-based web framework. In our
approach, we also used the following components:

 FlaskRESTful20, an extension for Flask that adds support for quickly building RESTful APIs.

 Flask-restful-swagger21, a wrapper for flask-restful which enables swagger22 support. Swagger
constitutes an API description and representation framework that allows humans and machines to
efficiently read and consume RESTful APIs.

The homepage of the above service is served as swagger web pages in the following address.

https://carre.kmi.open.ac.uk/ws

Figure 7 is a screenshot of the service homepage. The aim of this page is to list all methods available together
with a documentation of each method. The same information is also provided as a JSON object23, which can
be used directly by modern swagger client-libraries24. Currently, the methods implemented are the following:

 query. POST method that takes as input a sparql query and a token value. The response is a JSON
object with the results of the query.

 user. POST method that can be used to remove a user from the system. Takes as input the username
and the token. Token must match the username’s token.

 measurement. GET method that takes as input the name of the measurement (e.g. Steps) and the
token of the user. Returns a daily digest of the user with the values for the measurement passed.

 userProfile. GET method that takes as input the token of a user. If valid, returns user profile
information (username, user’s graphName, email, see Figure 8).

 authenticate. GET method that requires HTTP Basic authentication. If username and password are
valid, the user’s token is returned.

 ical.ics. GET method that requires HTTP Basic authentication. It returns an ical calendar that contains
the activity digest of the user. Can also be accessed as a feed:
webcal://carre.kmi.open.ac.uk/ws/ical.ics

 icalToken.ics. GET method similar to ical.ics above that does not use Authentication but takes as
input the user’s token. Can also be accessed as a feed:
webcal://carre.kmi.open.ac.uk/ws/icalToken.ics?token=XXX (see Figure 9 for an example).

19 http://flask.pocoo.org/
20 https://flask-restful.readthedocs.org
21 https://github.com/rantav/flask-restful-swagger
22 http://swagger.io/
23 https://carre.kmi.open.ac.uk/ws/api/spec.json, see Annex 1.
24 https://github.com/swagger-api/swagger-spec#additional-libraries

webcal://carre.kmi.open.ac.uk/ws/ical.ics
webcal://carre.kmi.open.ac.uk/ws/icalToken.ics?token=XXX
http://flask.pocoo.org/
https://flask-restful.readthedocs.org/
https://github.com/rantav/flask-restful-swagger
http://swagger.io/
https://carre.kmi.open.ac.uk/ws/api/spec.json
https://github.com/swagger-api/swagger-spec#additional-libraries

 D.4.1. Semantic Repository

FP7-ICT-61140 page 19 of 31

Figure 7. RESTful API homepage

The homepage of the service does not only serve as documentation. It allows developers to use the web
services directly and test the behaviour of each method. For example, a developer may want to see the return
object for the method userProfile. In that case, she can expand the corresponding method, fill in the input
parameters and try the method, as shown in Figure 8.

 D.4.1. Semantic Repository

FP7-ICT-61140 page 20 of 31

Figure 8. UserProfile method invocation.

Finally, it is worth noting that the service described in this section is undergoing development. Our intention is
to extend the number of web methods provided to developers as CARRE applications mature. For instance,
the educational data aggregator developed by the team in DUTH is expected to request information related to
risk associations. An example of a CARRE-related web method is the calendar-based provision of sensor data.
This method is providing an iCalendar-formatted25 feed that can be integrated into any modern calendar
application. More specifically, the feed is providing a daily activity digest as recorded through the sensor data
aggregators. Figure 9 shows a screenshot of the feed as integrated into Mac OS’s calendar application.

25 http://en.wikipedia.org/wiki/ICalendar

http://en.wikipedia.org/wiki/ICalendar

 D.4.1. Semantic Repository

FP7-ICT-61140 page 21 of 31

Figure 9. Screenshot of the Activity Digest integrated in the Mac OS calendar application.

5.2. Dereferenceable URIs

In addition to the above CARRE-related web services, a service has also been implemented for realising
dereferenceable URIs, as prescribed by the DoW. A dereferenceable URI is “a resource retrieval mechanism
that uses any of the internet protocols (e.g. HTTP) to obtain a copy or representation of the resource it
identifies.”26. That is to say, it should be possible to obtain a representation of an RDF entity identified by the
URI https://example.uri by simply retrieving the contents of that URL via HTTP(S). To achieve this, a method
is being implemented as part of the above flask application. This method is not exposed as a swagger method.
For example, Figure 10 shows the webpage when accessing the private URI
https://carre.kmi.open.ac.uk/users/gkotsis. The method identifies whether the URI to be accessed is a private
and prompts the user for an HTTP Basic Authentication (over https). If the credentials passed are valid, a
SPARQL query is passed on Virtuoso in the following form:

DESCRIBE <URI> FROM <https://carre.kmi.open.ac.uk/users/USERNAME>

Figure 10. An example webpage showing the output of the dereferenceable URIs.

Figure 10 shows 3 triples that state that user “gkotsis” has one connected device. Each one of the links
contained can be visited through an HTTP or HTTPS request, as appropriate, in order to continue navigation
of information in a seamless way.

26 http://en.wikipedia.org/wiki/Dereferenceable_Uniform_Resource_Identifier

http://en.wikipedia.org/wiki/Dereferenceable_Uniform_Resource_Identifier

 D.4.1. Semantic Repository

FP7-ICT-61140 page 22 of 31

5.3. Code Metrics

Table 1. Code metrics of application constructor.

__init__.py

Python code metrics

Number of Lines of Code (LOC) 392

Number of Logical Lines of Code (LLOC) 182

Number of Source Lines of Code (SLOC) 354

Number of Python Comment Lines 8

Number of Lines Representing Multi-line Strings 0

Number of Blank Lines 38

Table 2. Code metrics of CARRE services implementation.

carre.py

Python code metrics

Number of Lines of Code (LOC) 363

Number of Logical Lines of Code (LLOC) 263

Number of Source Lines of Code (SLOC) 309

Number of Python Comment Lines 12

Number of Lines Representing Multi-line Strings 0

Number of Blank Lines 54

Table 3. Code metrics of Virtuoso connection implementation.

virtuoso.py

Python code metrics

Number of Lines of Code (LOC) 173

Number of Logical Lines of Code (LLOC) 137

Number of Source Lines of Code (SLOC) 156

Number of Python Comment Lines 1

Number of Lines Representing Multi-line Strings 0

Number of Blank Lines 17

 D.4.1. Semantic Repository

FP7-ICT-61140 page 23 of 31

6. Data privacy and security issues

The CARRE system references the ISO/IEC 27002:201327 code of practice for comprehensive information
security control and risk management. The system will incorporate controls which are aligned to ISO/IEC
27018:201428 best practices for protection of Personal Identifiable Information (PII).

Service Organization Controls (SOC)29 2 (security controls) will guide the trust principles of security, availability
and processing integrity, which allows the CARRE system processing to be accurate, complete, fast and
authorized.

The CARRE API security technology stack is guided by Neo-security Stack30, illustrated by Figure 11.

Figure 11. CARRE security technology stack.

The CARRE authentication system implements OAuth 2, which is a “meta protocol” providing a useful
foundation for other protocols (e.g. OpenID Connect, NAPS and UMA). OAuth is very important in the CARRE
API system because it features:

 Delegated access to third parties applications

 Reduce password sharing between users and third-parties

 Enable the revocation of access

OAuth 2 is used by the CARRE system for delegated access to the CARRE API.

HTTPS is always preferred in all CARRE system and third party web applications. The CARRE system
maintains a list of allowed third parties, which includes key information:

 Callback URL which is used by OAuth 2 and SSO

 Third-parties contact and permissions (controlled by CARRE team)

Before deployment with patient data, it is proposed that the existing authentication model be extended with the
Universal Second Factor (U2F) protocol. This allows the CARRE system to augment the security of password

27 http://www.iso.org/iso/catalogue_detail?csnumber=54533
28 http://www.iso.org/iso/catalogue_detail.htm?csnumber=61498
29 http://en.wikipedia.org/wiki/Service_Organization_Controls
30 http://www.twobotechnologies.com/blog/2012/08/cloud-security-standards.html

http://www.iso.org/iso/catalogue_detail?csnumber=54533
http://www.iso.org/iso/catalogue_detail.htm?csnumber=61498
http://en.wikipedia.org/wiki/Service_Organization_Controls
http://www.twobotechnologies.com/blog/2012/08/cloud-security-standards.html

 D.4.1. Semantic Repository

FP7-ICT-61140 page 24 of 31

infrastructure by adding a strong second factor to user login. Google Authenticator31 on Android mobile device
could serve as the second factor, which is a free application that has gained popularity recently.

The JavaScript Object Notation (JSON) based Identity protocol currently used in the security model of the
CARRE system should also be extended. The JSON data format carries information with defined ways to
encode tokens, symmetric / asymmetric keys and digital signatures. The JSON Web Token (JWT) specification
defines the way to encode token in this JavaScript format; these lightweight tokens can be used in HTTP
headers and query strings. The JSON Web Key (JWK) and JSON Web Signature (JWS) specifications define
the way to encode encryption keys and digital signatures.

The implementation of federation and Single Sign On (SSO) is guided by OpenID Connect, which is essentially
the third version of OpenID (however it is a complete rewrite, and not compatible with previous
versions). OpenID Connect is an HTTP-based protocol that provides SSO. It is built atop of OAuth 2 and
achieves higher Levels of Assurance (LoA) compared to other similar purpose protocols like SAML and WS-
Federation.

CARRE’s Virtuoso Universal Server implements privacy mechanisms for its users. In particular, as discussed
earlier in Section 3.1, users’ private data are kept in Virtuoso’s private graphs, which by design do not allow
queries by one user to access the data of another user. Also, the CARRE repository by design allows
interlinkage between CARRE’s public data and the Linked Open Data Cloud, whereas CARRE users’ private
data only allows this in one direction. More specifically, the user may join from external datasets in order to
enrich their data semantically but external datasets may not query the users’ private data.

All CARRE subsystems have their own security model, and only give the least permission necessary to other
subsystems and/or users. The permission is assigned and controlled by specific members of CARRE team,
and will be audited and reviewed regularly.

31 https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2

https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2

 D.4.1. Semantic Repository

FP7-ICT-61140 page 25 of 31

Annex 1
RESTful Swagger documentation

 D.4.1. Semantic Repository

FP7-ICT-61140 page 26 of 31

The Swagger documentation as a JSON object is provided in the following URL:

https://carre.kmi.open.ac.uk/ws/api/spec

{
 "description": "CARRE web services API",
 "swaggerVersion": "1.2",
 "produces": [
 "application/json",
 "text/html"
],
 "models": {},
 "basePath": "https://carre.kmi.open.ac.uk/ws",
 "apis": [
 {
 "operations": [
 {
 "parameters": [
 {
 "name": "sparql",
 "dataType": "String",
 "allowMultiple": false,
 "required": true,
 "paramType": "query",
 "description": "SPARQL statement to be passed to the RDF repository."
 },
 {
 "name": "token",
 "default": "JSON",
 "allowMultiple": false,
 "required": true,
 "dataType": "String",
 "paramType": "query",
 "description": "Authentication token"
 }
],
 "responseClass": "String in the desired format. JSON (default), XML, TURTLE, N3, RDF",
 "notes": "This is the simplest implementation possible. A SPARQL query is passed to the Virtuoso server and results are
returned directly to the client.
None",
 "responseMessages": [
 {
 "message": "Executed.",
 "code": 201
 },
 {
 "message": "Invalid input",
 "code": 405
 }
],
 "summary": null,
 "nickname": "upload",
 "method": "post"
 }
],
 "path": "/query",
 "notes": null,
 "description": null
 },
 {
 "operations": [
 {
 "parameters": [
 {
 "name": "username",
 "dataType": "String",
 "allowMultiple": false,
 "required": true,
 "paramType": "query",
 "description": "Username."
 },
 {
 "name": "token",
 "default": "JSON",
 "allowMultiple": false,

 D.4.1. Semantic Repository

FP7-ICT-61140 page 27 of 31

 "required": true,
 "dataType": "String",
 "paramType": "query",
 "description": "Authentication token"
 }
],
 "responseClass": "Error message if any",
 "notes": "Method for deleting a user
None",
 "responseMessages": [
 {
 "message": "Executed.",
 "code": 201
 },
 {
 "message": "Invalid input",
 "code": 405
 }
],
 "summary": null,
 "nickname": "upload",
 "method": "post"
 }
],
 "path": "/user",
 "notes": null,
 "description": null
 },
 {
 "operations": [
 {
 "parameters": [
 {
 "name": "name",
 "dataType": "String",
 "allowMultiple": false,
 "required": true,
 "paramType": "query",
 "description": "Name of the measurement"
 },
 {
 "name": "token",
 "dataType": "String",
 "allowMultiple": false,
 "required": true,
 "paramType": "query",
 "description": "OAuth token"
 }
],
 "responseClass": "JSON",
 "notes": "this provides measurements
None",
 "responseMessages": [
 {
 "message": "Executed.",
 "code": 201
 },
 {
 "message": "Invalid input",
 "code": 405
 }
],
 "summary": null,
 "nickname": "nickname",
 "method": "get"
 }
],
 "path": "/measurement",
 "notes": null,
 "description": null
 },
 {
 "operations": [
 {
 "parameters": [

 D.4.1. Semantic Repository

FP7-ICT-61140 page 28 of 31

 {
 "name": "token",
 "dataType": "String",
 "allowMultiple": false,
 "required": true,
 "paramType": "query",
 "description": "OAuth token"
 }
],
 "responseClass": "JSON",
 "notes": "this provides user profile information
None",
 "responseMessages": [
 {
 "message": "Executed.",
 "code": 201
 },
 {
 "message": "Invalid input",
 "code": 405
 }
],
 "summary": null,
 "nickname": "nickname",
 "method": "get"
 }
],
 "path": "/userProfile",
 "notes": null,
 "description": null
 },
 {
 "operations": [
 {
 "parameters": [],
 "responseClass": "JSON",
 "notes": "this provides authentication tokens. Basic authentication is required.
None",
 "responseMessages": [
 {
 "message": "Executed.",
 "code": 201
 },
 {
 "message": "Invalid input",
 "code": 405
 }
],
 "summary": null,
 "nickname": "nickname",
 "method": "get"
 }
],
 "path": "/authenticate",
 "notes": null,
 "description": null
 },
 {
 "operations": [
 {
 "parameters": [],
 "responseClass": "JSON",
 "notes": "Provides calendar, also accessible through webcal://carre.kmi.open.ac.uk/ws/ical.ics. Basic authentication is required.

None",
 "responseMessages": [
 {
 "message": "Executed.",
 "code": 201
 },
 {
 "message": "Invalid input",
 "code": 405
 }
],

 D.4.1. Semantic Repository

FP7-ICT-61140 page 29 of 31

 "summary": null,
 "nickname": "nickname",
 "method": "get"
 }
],
 "path": "/ical.ics",
 "notes": null,
 "description": null
 },
 {
 "operations": [
 {
 "parameters": [
 {
 "name": "token",
 "default": "JSON",
 "allowMultiple": false,
 "required": true,
 "dataType": "String",
 "paramType": "query",
 "description": "Authentication token"
 }
],
 "responseClass": "JSON",
 "notes": "Provides calendar, also accessible through webcal://carre.kmi.open.ac.uk/ws/icalToken.ics?token=XXX.<
br/>None",
 "responseMessages": [
 {
 "message": "Executed.",
 "code": 201
 },
 {
 "message": "Invalid input",
 "code": 405
 }
],
 "summary": null,
 "nickname": "nickname",
 "method": "get"
 }
],
 "path": "/icalToken.ics",
 "notes": null,
 "description": null
 }
],
 "resourcePath": "/",
 "apiVersion": "0.1",
 "spec_endpoint_path": "/api/spec"
}

 D.4.1. Semantic Repository

FP7-ICT-61140 page 30 of 31

Annex 2
Repository RESTful API Software

 D.4.1. Semantic Repository

FP7-ICT-61140 page 31 of 31

What is CARRE Repository RESTful API?

The Repository RESTful API is a component developed on top of CARRE’s Virtuoso server and constitutes
a web service. This API aims to securely expose a number of CARRE-related methods.

The RESTful API is developed using Flask, which is a Python-based web framework. In our approach, we also
used the following extensions:

 FlaskRESTful, an extension for Flask that adds support for quickly building RESTful APIs.

 Flask-restful-swagger, a wrapper for flask-restful which enables swagger support. Swagger
constitutes an API description and representation framework that allows humans and machines to
efficiently read and consume RESTful APIs.

Access

The homepage of the above service is served as swagger web page at: https://carre.kmi.open.ac.uk/ws

Download

Repository RESTful API v0.1:

 Source (10 KB): CARRE_Triple_Store.zip (Python code)

download from http://www.carre-project.eu/innovation/repository-restful-api/

CARRE Repository RESTful API is Open Source

CARRE Repository RESTful API is Open Source and can be freely used in Open Source applications under
the terms GNU General Public License (GPL).

Copyright © 2015, CARRE Project, The Open University (OU), UK

http://flask.pocoo.org/
https://flask-restful.readthedocs.org/
https://github.com/rantav/flask-restful-swagger
https://carre.kmi.open.ac.uk/ws
http://www.carre-project.eu/download/software/d.3.2_aggregators_sensors/CARRE_D.3.2_Aggregators_Sensors_Software_04_TripleStore.zip
http://www.carre-project.eu/innovation/repository-restful-api/
http://www.carre-project.eu/

