

FP7-ICT-611140 CARRE

Project co-funded by the European Commission
under the Information and Communication Technologies
(ICT) 7th Framework Programme

D.5.2. Query and Performance Enhancements

Z. Deng, E. Liu, A. Third, X. Zhao, Y. Zhao

October 2015

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 2 of 26

CARRE Contacts

Project Coordinator: Eleni Kaldoudi kaldoudi@med.duth.gr

DUTH
Democritus University of Thrace

Eleni Kaldoudi kaldoudi@med.duth.gr

OU
The Open University

John Domingue john.domingue@open.ac.uk

BED:
Bedfordshire University

Enjie Liu Enjie.Liu@beds.ac.uk

VULSK:
Vilnius University Hospital Santariškių Klinikos

Domantas Stundys Domantas.Stundys@santa.lt

KTU
Kaunas University of Technology

Arūnas Lukoševičius arunas.lukosevicius@ktu.lt

PIAP
Industrial Research Institute for Automation
& Measurements

Roman Szewczyk rszewczyk@piap.pl

Disclaimer

This document contains description of the CARRE project findings, work and products. The authors of this
document have taken any available measure in order for its content to be accurate, consistent and lawful.
However, neither the project consortium as a whole nor the individual partners that implicitly or explicitly
participated in the creation and publication of this document hold any sort of responsibility that might occur as
a result of using its content.

In case you believe that this document harms in any way IPR held by you as a person or as a representative
of an entity, please do notify us immediately.

The content of this publication is the sole responsibility of CARRE consortium and can in no way be taken to
reflect the views of the European Union.

CARRE is a Specific Targeted Research Project partially funded by the European Union,
under FP7-ICT-2013-10, Theme 5.1. “Personalized health, active ageing & independent
living”.

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 3 of 26

Document Control Page

Project

Contract No.: 611140

Acronym: CARRE

Title: Personalized Patient Empowerment and Shared Decision Support
for Cardiorenal Disease and Comorbidities

Type: STREP

Start: 1 November 2013

End: 31 October 2016

Programme: FP7-ICT-2013.5.1

Website: http://www.carre-project.eu/

Deliverable

Deliverable No.: D.5.2

Deliverable Title: Query and Performance Enhancements

Responsible Partner: BED

Authors: (in alphabetical order) Z. Deng, E. Liu, A. Third, X. Zhao, Y. Zhao

Input from: All partners

Peer Reviewers: G. Drosatos (DUTH), R. Ugodzinski (PIAP)

Task: T.5.2. Query design and query performance enhancement

Task duration: 10 months: 1 January 2015 to 31 October 2015

Work Package: WP5: Data management & visual analytics for empowerment

Work Package Leader: BED – Enjie Liu

Due Date: 31 October 2015

Actual Delivery Date: 31 October 2015

Dissemination Level: PU

Nature: R & D

Files and format: Deliverable report: 1 pdf file

Version: 02

Status: Draft

 Consortium reviewed

 WP leader accepted

 Coordinator accepted

 EC accepted

http://www.carre-project.eu/

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 4 of 26

Document Revision History

Version Date Modifications Contributors

v01.1 08 July 2015 Template and content Xia Zhao

v01.2 19 Sept 2015 First daft Enjie Liu, Zhikun Deng

v01.3 29 Sept 2015 Second draft Enjie Liu, Youbing Zhao

v01.4 03 Oct 2015 Third draft Allan Third

v01.5 08 Oct 2015 Forth draft Zhikun, Enjie Liu

v01.6 25 Oct 2015 Ffifth draft George Drosatos

v01.7 28 Oct 2015 Sixth draft Zhikun Deng, Youbing
Zhao

v01.8 29 Oct 2015 Seventh draft Zhikun Deng, Enjie Liu

v02 31 Oct 2016 editing for uniformity E. Kaldoudi

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 5 of 26

Table of Contents

Executive Summary ... 7

Terms and Definitions ... 8

1. Introduction .. 9

2. Analysis of CARRE RDF data repositories ... 9

2.1. Status of CARRE RDF Data Repositories .. 9

2.1.1. Public RDF ... 10

2.1.2. Private RDF.. 10

2.2. Query Performance Enhancement Requirements .. 11

2.2.1. RDF query optimization ... 11

2.2.2. Why RDF is special? .. 11

3. RDF query performance enhancement approaches .. 12

3.1. Caching methods ... 12

3.2. Localisation methods .. 13

3.3. Optimizing reformulation-based query answering in RDF .. 13

3.4. Implementation tool related optimization .. 14

4. Web application query performance enhancement mechanisms .. 14

4.1. Server-side caching ... 15

4.1.1. Caching proxy servers ... 15

4.1.2. Content delivery networks (CDN) .. 16

4.1.3. Caching contents ... 16

4.1.3.1. Whole page content ... 16

4.1.3.2. Partial page content ... 17

4.2. Client-side caching .. 17

4.2.1. Web application level ... 17

4.2.2. Web browser level ... 18

4.3. Useful tools... 19

4.3.1. Redis .. 19

4.3.2. Memcached.. 19

5. Implementation .. 19

5.1. Workflow ... 19

5.2. Client-side implementation ... 20

5.3. Server side implementation .. 20

5.4. Test and validation .. 21

5.4.1. Prelimary test ... 22

5.4.2. Preminary test 1 – loading time ... 23

5.4.3. Preminary test 2 – CPU usage .. 25

6. Conclusion.. 26

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 6 of 26

List of Figures

Figure 1. Query workflow ... 20

Figure 2. Testing workflow ... 22

Figure 3. Screenshot of data that cached in the local storage .. 22

Figure 4. Loading time before optimization ... 24

Figure 5. Loading time after optimization .. 24

Figure 6. CPU usage before optimization .. 25

Figure 7. Applications for profile 2 ... 25

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 7 of 26

Executive Summary

CARRE personalised patient empowerment and decision support services require presentation and analysis
of a large volume of heterogeneous data and metadata as harvested from a variety of data sources including
sensors, risk factors, PHR, decision support, etc. Without proper tools, it is almost impossible to achieve this
goal.

Work Package 5, Task 5.2, “Data Management & Visual Analytics for Empowerment”, is proposed to meet this
challenge. In Task 5.2 “Query design and query performance enhancement”, is to investigate general
approaches in enhancing the RDF query performances. General guidelines are provided, considering there
will be potentially a large number of users of the CARRE system, who will generate large dataset from sensors
and PHR.

This document is a deliverable report of D5.2 “Query design and query performance enhancement” of WP5 in
CARRE project. Some advices for the future implementation will be provided. Initial tests are conducted as a
proof-of-concept. The actual effect of the improvement will be seen after finishing the task D5.3: Advanced
visual analytics module.

About CARRE

CARRE is an EU FP7-ICT funded project with the goal to provide innovative means for the management
of comorbidities (multiple co-occurring medical conditions), especially in the case of chronic cardiac and renal
disease patients or persons with increased risk of such conditions.

Sources of medical and other knowledge will be semantically linked with sensor outputs to provide clinical
information personalised to the individual patient, to be able to track the progression and interactions of
comorbid conditions. Visual analytics will be employed so that patients and clinicians will be able to visualise,
understand and interact with this linked knowledge and take advantage of personalised empowerment services
supported by a dedicated decision support system.

The ultimate goal is to provide the means for patients with comorbidities to take an active role in care
processes, including self-care and shared decision-making, and to support medical professionals in
understanding and treating comorbidities via an integrative approach.

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 8 of 26

Terms and Definitions

The following are definitions of terms, abbreviations and acronyms used in this document.

Term Definition

API Application programming interface (API) is a set of functions and procedures that allow the
creation of applications that access the features or data of an operating system,
application, or other service

BPM Beats Per Minute

BSBM Berlin SPARQL Benchmark

CPU Central Processing Unit

C#.NET C# is an elegant and type-safe object-oriented language that enables developers to build
a variety of secure and robust applications that run on the .NET Framework. C# programs
run on the .NET Framework, an integral component of Windows that includes a virtual
execution system called the common language runtime (CLR) and a unified set of class
libraries

C#.NET MVC Model View Controller

DSS Decision Support System

EC European Commission

eHealth Electronic Health

EHR Electronic Health Record

EU European Union

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ICT Information and Communication Technologies

MedLinePlus The National Institutes of Health's Web site for patients and their families and friends,
http://medlineplus.gov.

OAuth Open Standard to Authorization

Patient ID Personal Identification Number

PHR Personal Health Record

PubMed Free search engine accessing primarily the MEDLINE database
www.ncbi.nlm.nih.gov/pubmed/

RDF Resource Description Framework - a standard model for data interchange on the Web.

SPARQL RDF query language, that is, a query language for databases, able to retrieve and
manipulate data stored in RDF

TTL Time-To-Live

URL Uniform Resource Locator

WWW World Wide Web

XML Extensible Markup Language - a markup language that defines a set of rules for encoding
documents in a format that is both human-readable and machine-readable

http://medlineplus.gov/
http://www.ncbi.nlm.nih.gov/pubmed/

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 9 of 26

1. Introduction

According to the DOW, the task will focus on:

 Considering cache mechanisms for reducing query response network latency and will implement the
backend query function in a distributed environment, such as through cloud computing.

 Adaptations and optimizations at facilitating the process of graph visualization generation and
supporting interactive operations is also part of this task.

From user perspective, query performance enhancement is needed due to the following factors:

 User experience (1 sec delay in page response can result in a 7% reduction in conversions) If an e-
commerce site is making $100,000 per day, a 2-second page delay could potentially cost you $2.5 M
in lost sales every year1. Although we are not building a e-commerce web system, and our concern is
the user engagement. In which case, user experience is also an important feature for us.

 Large volume of visitors access to the repositories

 Increase user engagement via good customer experiences

 Limitation brought by the tools used in development

From technology point of view, query performance enhancement is needed due to the following factors:

 For triple stores, in typical application scenarios only relatively small parts of a knowledge base change
within a short period of time.

 The majority of triples remain unchanged. Hence, most queries will return the same results even after
the occurrence of changes on the knowledge base.

In the previous deliverable D2.1, four high – level visual analytics use cases have been identified, they are:

 UC_Vis_04 : The goal of this use case is to allow patients to understand their disease progression;

 UC_Vis_05 : The goal of this use case is to allow patients to understand their disease progression
based on personal monitored data;

 UC_Vis_06 : The goal of this use case is to allow patients to understand their disease progression if
they change their lifestyle;

 UC_Vis_07: The goal of this use case is to allow patients to understand their disease by comparing
their personal state with current medical evidence.

The visual analytics will provide all necessary functions for the above cases.

2. Analysis of CARRE RDF data repositories

2.1. Status of CARRE RDF Data Repositories

Storage and management of RDF data is implemented using the open source version of Virtuoso Universal
Server. More specifically, the OU team has installed the latest version of Virtuoso 62 (6.4) on a 6.6 CentOS
(Santiago) machine with 8GB of RAM and a dual core 2.50GHz Xeon with 30GB expandable Hard Disk space.
Virtuoso is both a database and a middleware engine3.

At the time of writing, the repository contains 3.47 million RDF triples occupying 1.1Gb, representing risk
associations and multiple sensor data entries per day for approximately 40 users, some of whom have data

1 https://blog.kissmetrics.com/loading-time/
2 http://virtuoso.openlinksw.com/
3 http://virtuoso.openlinksw.com/virt_faq/

https://blog.kissmetrics.com/loading-time/
http://virtuoso.openlinksw.com/
http://virtuoso.openlinksw.com/virt_faq/

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 10 of 26

covering a period of up to two years. The current server configuration is therefore more than sufficient for
current load and for anticipated use during CARRE evaluation, with the ability to cache the entire database in
memory whenever needed. The server is easily expandable in terms of both memory and storage beyond
these relatively modest specifications should the requirements increase.

The CARRE repositories are divided by privacy concerns. The private repository stores data relating to
individual patients, in a secure and access-limited fashion, with each patient’s data in a separate and restricted
RDF graph. All data from personal sensors, personal health records and any decision support services
recommendations for an individual are stored and queried from that individual’s private graph. This further
limits the potential performance requirements, as there is never a need (nor, due to privacy concerns, an
option) to query more than one private graph at the same time.

The public repository stores general medical knowledge relating to risk associations, evidence and
observables, and is available for public querying without authentication, as it contains no personally identifying
data for any patient and serves as a general-purpose resource for medical knowledge in a semantic format.

The RESTful API to access CARRE data is described in detail in D.4.1 and D.4.2, including the privacy and
security features for private data. An authenticated and approved application can retrieve an access token per
user from the API, which is used to authenticate all calls which access that user’s private graph. API calls
relating to public data may be performed without any token.

SPARQL4 is the standard query language for RDF data. The API allows arbitrary SPARQL queries to be
submitted via an authenticated call, and also contains several helper methods which wrap specific common
queries in an optimised way (for example, retrieving a daily summary of sensor readings for a user).

2.1.1. Public RDF

The CARRE public repository is used to store the risk associations that gathered by the project, and reported
in D2.2. This repository is meant to be linked to the Linked Open Data cloud, and used as public knowledge.
In the CARRE public repository, the data include:

 CARRE risk associations

 CARRE ontologies described in D2.4

 CARRE educational data

2.1.2. Private RDF

In CARRE, the private data repository stores the patient related data, which mainly come from the PHR,and
the sensor data monitoring. The data comprises personal diary data which includes the biomarker records
(with the necessary data of observables as indicated in the risk associations) and life style tracking data. The
development of the private RDF repository is carried out by OU and the progress had been reported in D2.5,
D4.1 and D4.2.

For demonstration purposes, there are currently 18 virtual patients defined by doctors based on data selected
from real patients and were presented in Annex 1 of Deliverable 5.1. Three virtual patients (as described in
D5.1) are selected from them as detailed use cases to be used in designing the visual analysis study to perform
lifestyle management and risk assessment. In the following subsections we will list the basic information of
thevirtual patients that are used in this deliverable.

Private data includes:

 Sensor data for bio-marker and activities tracking: Biomarker data and life style tracking data that are
collected by sensors, mostly can be used at home.

 Personal Health Record (PHR) data:

o Patient data will be retrieved from PHRs, Vivaport and HealthVault, by CARRE PHR data
aggregator using PHR’s APIs. Then data is mapped and converted to format used in OU

4 http://w3.org/TR/sparql11-query/

http://w3.org/TR/sparql11-query/

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 11 of 26

CARRE RDF and inserted into Private RDF via common interfaces and common data
exchange method used by RDF repository (SPARQL syntax and methods).

o CARRE PHR manual data entry system is another option to enter patient records. It is also
used for anonymous data collection.

 Web lifestyle data based on patient’s web searches: Web lifestyle data is particularly patient’s
intentions that are extracted from her online interaction with the web search engines (Google, Bing
and Yahoo).

 Personalised decision support results: The DSS will communicate with OU CARRE RDF Repositories
over SPARQL to retrieve RDF from both Repositories. For DSS service the CARRE semantic
repository will be a RDF store accessible as a RESTful Web Service. The DSS runtime infrastructure
will provide:

o Framework and service to both Patient Application and Medical Expert.

o Forecasting models and analytics based on the risk model fulfilled by data in Repositories.

o Run-time decision based on the status of incoming data.

 Personalised educational data that used for patients’ self-management: This data is recomended by
the decision support system and is linked with the educational data from the public RDF. The
educational data is stored in the public RDF. In the private RDF, we can store the personalised
educational data that is in practise the links to the public RDF.

2.2. Query Performance Enhancement Requirements

This task anticipate the possible problems that may arise later when there are many users that will be involved
in using, contributing and exploring the risk associations and the prediction of the disease progressions.
Traditional approaches for posing queries against Linked Data retrieve and cache data in local indexes;
however, the dynamicity and scope of Web data implies that results are often stale or missing.

We search for solutions from the two perspectives:

 RDF data repository query

o Caching methods

o Localisation method

o Optimization of the query statements

o Implementation related tool optimizations

 Web application query

2.2.1. RDF query optimization

CARRE data will be stored in RDF. The user application, such as explore the risk factors from the public
repository, or explore their own disease progression, users has to retrieve data from the portal, and the portal
has to fetch data from the RDF. In particular, a typical application is to show the risk associations and
progressions in an interactive way to view graphs. The graphs are used to visualise data, and more importantly,
the interrelation of the data. This makes our performance enhancement not only face problems with those
involved in web data retrieve, but also with the problems if slowness of the graphic processing.

2.2.2. Why RDF is special?

Compared to querying data stored in a fixed relational database schema, querying a triple store is still usually

slower by a factor of 2-20 (cf. e.g. BSBM results5). This shortcoming is due to the fact that columns in a

5 http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/

http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 12 of 26

relational database are typed and may be indexed more efficiently. By using a triple store, this efficiency is lost

to the flexibility of amending and reorganizing schema structures easily and quickly6.

Link-traversal query approaches for Linked Data have the benefit of up-to-date results and decentralised
execution, but operate only on explicit data from dereferenced documents. However, on the other hand, in
many typical application scenarios, only relatively small parts of a knowledge base change within a short period
of time in the triple stores. The majority of triples remain unchanged. Hence, most queries will return the same
results even after the occurrence of changes on the knowledge base. In this case, caching is a suitable choice.

In the heavy traffic condition, and with the resources constrains on the Internet access, optimizing web

application is demand7. A web application comprises of various modules and individual components with
specialised function, which process a piece of information according to the code and provide output to other
components.

Optimization of a web application improves the usability of for the user and enhances their experience,
Optimization provides following advantages:

 Enhancing the speed of loading a web page

 Balancing the amount of data transfer to an optimal level

 Reducing the unnecessary processing by optimise the load on web servers

3. RDF query performance enhancement approaches

3.1. Caching methods

To obtain comparable high query performance with relational databases, diverse database technologies have
to be adapted to confront the complexity posed by both RDF data and SPARQL queries. Database caching is
one of such technologies that improves the performance of database with reasonable space expense based
on the spatial/temporal/semantic locality principle.

However, existing caching schemes exploited in RDF stores are found to be dysfunctional for complex query
semantics. Although semantic caching approaches work effectively in this case, little work has been done in
this area. To improve SPARQL query performance with semantic caching approaches, approaches such as
SPARQL algebraic expression tree (AET) based caching and entity caching can be used. The main idea is
that successive queries with multiple identical sub-queries and star-shaped joins can be efficiently evaluated
with these two approaches. The approaches are implemented on a two-level-storage structure. The main
memory stores the most frequently accessed cache items, and items swapped out are stored on the disk for
future possible reuse. Evaluation results on three mainstream RDF benchmarks illustrate the effectiveness
and efficiency of our approaches.

Considering the above, it is important for applications that require extremely high performance to ensure that
data is compact and related data is located contiguously where possible. This way, the utilisation of the cached

data can be maximised. DBMSs have historically performed poorly at this task8.

In addition, queries are often frequently issued, for example, when different users access the same information
in a Semantic Web application. We can take advantage of this fact by caching query results, but also want to
ensure that cached query results are selectively invalidated on knowledge base updates.

Caching of data also poses an extra issue in scenarios relating to healthcare, such as CARRE. Applications
authorised to access the CARRE private repository must take care not to cache confidential data in insecure

6 Martin, M., Unbehauen, J., & Auer, S. (2010). Improving the performance of semantic web applications with SPARQL
query caching. In The Semantic Web: Research and Applications (pp. 304-318). Springer Berlin Heidelberg.

7 http://www.examiner.com/article/web-application-optimization-techniques

8 A. Ailamaki, D. J. DeWitt, M.D. Hill, D.A. Wood, ‘DBMSs On A Modern Processor: Where Does Time Go?’, Proceedings

of the 25th VLDB Conference, Edinburgh, Scotland, 1999.

http://www.examiner.com/article/web-application-optimization-techniques

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 13 of 26

locations. In particular, this means that any use of client-side caching must be restricted only to data from the
public repository.

3.2. Localisation methods

It is highly desirable to have a way of generating SPARQL queries that make use of data residing in disparate
data sources served by multiple SPARQL endpoints. There have been presented some solutions to the

problem of querying the data sources at multiple SPARQL endpoints in an integrated manner, namely, DARQ9

and SemWIQ10. These approaches require either supplying of statistics about SPARQL endpoints or

registration of SPARQL endpoints in a catalog, respectively. Both of them then use statistics about SPARQL
endpoints which are supplied or in case of SemWIQ generated dynamically in order to determine where to
send sub-queries. DARQ and even SemWIQ impose restrictions on the expressivity of the SPARQL constructs

used. Only a few RDF data management systems, such as AllegroGraph11, Stardog12 or Virtuoso, use

Reformulation-based query answering.

Automatic query satisfaction is not a trivial task. However, while a programmer may intuitively knows the most
efficient manner in which to process a query. To achieve this, it requires significant insight and expertise. An
automatic query optimiser can evaluate many different plans before settling on one with a low cost, and can
do so without the input of a knowledgeable human. There are four steps to query optimisation10:

 Cast the query into internal form

 Convert to canonical form

 Choose candidate low-level procedures

 Generate query plans and choose the cheapest

3.3. Optimizing reformulation-based query answering in RDF

Reformulation-based query13 answering is a query processing technique aiming at answering queries under
constraints. It consists of reformulating the query based on the constraints, so that evaluating the reformulated
query directly against the data (i.e., without considering any more the constraints) produces the correct answer
set. We consider optimizing reformulation-based query answering in the setting of ontology-based data access,
where SPARQL conjunctive queries are posed against RDF facts on which constraints expressed by an RDF
Schema hold.

Joining can be an expensive operation, involving as it does two different tables10. There are a variety of
algorithms, depending on the state of the data as regards sorting. This ranges from the very basic brute force
algorithm, with a scaling of O(n2) with the size of the data being examined, to more useful techniques, such as

merge, sort/merge, and hash joins. These are described below14:

 Nested Loop: It takes a pair of join inputs, such as tables, or outputs from another operator, and
designates one the outer, and one the inner input. The inner input is then scanned for matches once
for each item in the outer. This approach guarantees that all matches are found, and it work well for
small datasets. However, in the case of CARRE project, the RDF stores will potentially be working
with extremely large tables, this simple approach cannot be considered advisable. A more commonly
utilised solution is the index nested loop join.

9 http://darq.sourceforge.net/
10 http://semwiq.faw.uni-linz.ac.at/
11 http://franz.com/agraph/allegrograph/
12 http://stardog.com/
13 Damian Bursztyn, Fran¸cois Goasdou´e, Ioana Manolescu, ‘Reformulation-based query answering in RDF: alternatives

and performance’, HAL Id: hal-01174298 https://hal.inria.fr/hal-01174298
14 http://eprints.soton.ac.uk/267917/1/MiniThesis.pdf

http://darq.sourceforge.net/
http://semwiq.faw.uni-linz.ac.at/
http://franz.com/agraph/allegrograph/
http://stardog.com/
https://hal.inria.fr/hal-01174298
http://eprints.soton.ac.uk/267917/1/MiniThesis.pdf

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 14 of 26

 Merge and Sort/Merge: this types of joins assume that both inputs are sorted in order on the columns
that are being joined on. Therefore, a simple scan of both inputs can perform a join in sequent, if the
join is one to many. Merge join is always the fastest join if data is sorted correctly.

 Hash: A hash join performs a single scan over each input. It creates a hash table on the first input,
with a pointer to the corresponding tuple on disk. When the second input is being scanned, it
compares against that hash table to produce the joined output. This technique scales in linear fashion
with the amount of data scanned, and does not require inputs to be sorted to work efficiently. However,
it is likely to be slower than merge join.

 Join Minimisation: in essence the process of pre-calculating joins does not have to be performed at
run time. Join pre-calculation is generally very attractive for read optimised disk-based systems. If a
given join is performed regularly, a great deal of time can be saved by storing the completed join on
disk.

 Implementation related tool optimizations

3.4. Implementation tool related optimization

In CARRE, Virtuoso is used for the RDF repository. However, as for every tool, there are particular issues and
optimisations which apply to Virtuoso, that we need to take into account when generate queries to avoid
decrease of the performance. For example:

 When repository sizes are large (do not fit in physical memory), or queries are complex or unoptimised,
the server can suffer on a large number of page views.

 Query optimization – for example, converting a scalar subquery into a derived table with a GROUP

BY (decorrelation) can improve Virtuoso performance15.

 Clustering – Virtuoso configured on clustered systems has been shown to achieve excellent

performance on very large scale RDF datasets16.

For CARRE in particular, the clustering abilities of Virtuoso show that if the system should ever need to be
scaled to a significantly larger userbase, performance could be maintained easily, since each user’s private
data is not only independent of every other user’s data, but deliberately isolated from them. This architecture
therefore supports a clear partitioning of data across cluster nodes.

4. Web application query performance enhancement mechanisms

Fetching something over the network could be both slow and expensive: large responses require many
roundtrips between the client and server, which delays when they are available and can be processed by the
browser, and also incurs data costs for the visitor. As a result, the ability to cache and reuse previously fetched

resources is a critical aspect of optimizing for performance. Using resource caching17 will enhance API

performance, reduce the overhead on the server, and minimize the response size. Mechanisms will be looked
from different aspects: server side and client side. Overview

Web application caching18 aims to store locally generated data that possible to be reused in the future. The

data are mostly stored closer to the end user. Caching can be implemented at different levels to improve web
application performance. In general, caching help users to retrieve contents faster.

15 http://www.openlinksw.com/weblog/oerling/?id=1800
16 http://www.w3.org/wiki/LargeTripleStores#OpenLink_Virtuoso_v6.1_-

_15.4B.2B_explicit.3B_uncounted_virtual.2Finferred
17 https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching?hl=en
18 http://docforge.com/wiki/Web_application/Caching

http://docforge.com/wiki/End_user
http://docforge.com/wiki/Web_application#Performance
http://docforge.com/wiki/Web_application#Performance
http://www.openlinksw.com/weblog/oerling/?id=1800
http://www.w3.org/wiki/LargeTripleStores#OpenLink_Virtuoso_v6.1_-_15.4B.2B_explicit.3B_uncounted_virtual.2Finferred
http://www.w3.org/wiki/LargeTripleStores#OpenLink_Virtuoso_v6.1_-_15.4B.2B_explicit.3B_uncounted_virtual.2Finferred
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching?hl=en
http://docforge.com/wiki/Web_application/Caching

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 15 of 26

Benefits of web application caching18:

 Even small performance improvements from caching can drastically improve the user experience as
the information they requested are not retrieved from the distant server, instead at a local server.

 It reduces workload of the service provider’s web server, which reduces hardware and support costs.

 Caching could be done with very low-cost. Most web browsers and some Internet networking
components, such as proxies, have common caching options. Leveraging these caches only requires
a simple entry in the HTTP response header.

 The HTML5 standard incorporates web application caching through manifest files, which enable
developers to implement application-specific caching techniques easier.

Drawbacks of web application caching18:

 It is sometimes requires extra logic with additional testing and debugging time to implement caching,
therefore increase cost. .

 The best results of caching often emerged fromfrom purposed built -software or hardware. Thesecan
be costly and harder to support. For example, with distributed systems a dedicated proxy cache sitting
above the web application might be most practical.

 System administrators might need to be specially trained or experienced in particular caching
scenarios to properly configure and support them.

 For client-side caching, privacy concerns may prevent the data being cached to a an insecure local
device.

A wide variety of design patterns exist for caching within web applications. Each design pattern has its own
set of benefits and limitations. The patterns can also be used in combination with each other. For those web
pages that rarely change, they do not required to be retrieved on every new request. It is advisable to consider
caching in the early stage in the request handling process.

4.1. Server-side caching

4.1.1. Caching proxy servers

In the simplest form of a web application, the system responds directly to every request from a web browser.
It is beneficial to introduce a dedicated caching server, a proxy server, between the client and the web
application server to avoid dynamic processing completely whereever possible. A proxy server can check
the HTTP headers for cache hints and act accordingly. This frees the web server from all requests, but only to
process the requests it actually needs to.

A proxy can often be introduced without additional changes to the web application if the web application had
already responded to the requests with appropriate cache headers. Some proxies also add their own HTTP
header content for tracking purposes, or to pass back information to the web application. Some proxy may
allow dynamically generate requests where required, such as for user accounts and expired data.

In addition to caching, proxy servers may perform additional performance enhancement tasks, such as
compressing data and optimizing documents. Systems that assist in such way are referred to as web
accelerators. For example, this intermediary may multiple JavaScript files, minify and combine the files, and
change the HTML of the main document to reference the new smaller JS file. This allows the web developers
to focus on building page functionality while another system handles performance characteristics.

Sometimes caching proxy servers are most useful in distributed environments, where the proxy server can act
as both a load balancer and a cache. For every request requiring dynamic content the request is passed to
the next available web server.

http://docforge.com/wiki/Web_browser
http://docforge.com/wiki/Internet
http://docforge.com/wiki/HTTP
http://docforge.com/w/index.php?title=HTML5&action=edit&redlink=1
http://docforge.com/wiki/Web_application/Caching#HTTP_Headers
http://docforge.com/wiki/JavaScript
http://docforge.com/wiki/HTML
http://docforge.com/w/index.php?title=Load_balancer&action=edit&redlink=1

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 16 of 26

4.1.2. Content delivery networks (CDN)

Content Delivery Networks refer to the geographically distributed networks, which can be very useful for storing
static content close to the end user. For a service provider with multi-national presences, the so called Edge
servers can reside around the world, closer to the end users; while the primary storage resides in several
central locations. A web application can push any static content via FTP to the central server. Upon first request
in a local region, the edge server requests the file from the central server. Subsequent requests near the edge
server return the cached content until the Time-To-Live (TTL), expires. For example, if the TTL is set to 30
minutes, then the next request following the 30 minute mark is refreshed from the central server.

A Content Delivery Network might serve an entire web site, having the domain name point directly to the CDN.
The content can be pushed to the CDN's upload server whenever the web application is updated. Alternatively,
a web application might push just large static content, such as videos or images, to the CDN, while handling
the primary web page requests dynamically.

4.1.3. Caching contents

In term of the contents, caching can be done for the whole or part of the contents on each page for web
applications. Typically, there are two approaches: caching for the whole pages or caching for partial pages.

4.1.3.1. Whole page content

When a web server/web application accepts a request, that server might employ its own form of page caching.
In general, the main problem to solve in caching whole page content is to decide when the content is out-of-
date and needs refreshing, particularly in large systems where a single page is made of many smaller
components. To completely avoid dynamically generating a requested web page more than once, the entire
page may be cached to disk and served directly by the web server. When the page is first created, or updated
later, the disk cache is written in a path accessible to the web server and subsequently being handled without
any dynamic code.

This method has several important consequences19:

 All URLs from other pages must point directly to this file, or a path easily being processed
by rewriting rules. Therefore, it is best to use a predetermined naming convention for all cached files
so it's relatively trivial for other pages to generate the correct path.

 Page cache updates must be explicitly triggered when necessary. If missing page requests are all sent
to the web application, then the first request might be one trigger. All future related updates by a
content manager must also be applied.

 No content on the page can be generated dynamically during the page request. However, this can be
overcome by AJAX. The client makes requests after loading a page, in order to update any additional
dynamic content. However, this may also overcome the benefits of caching the entire page.

 Clean URLs might be lost without the use of rewriting. The URL structure should be considered in the
context of the entire web application.

Another method of caching complete page content is for the web application to handle it directly on demand.
All page requests still go directly to the web application, it then checks for a cached page. If the cached page
exists and is not out of date, the page is sent immediately back to the client and no further processing is taken.
The cache might be updated periodically or when the data becomes out of date.

This method also has several important consequences19:

 URLs do not need to be changed for cached or dynamic content. It is easier for bother users and the
web application.

 The cached data may be stored at anywhere that accessible by the web application, such as remote
flat file storage or databases.

 The web application may need to query several components to determine if the page as a whole is
out of date. Alternatively, the other components may notify a core caching component when it is time

19 http://docforge.com/wiki/Web_application/Caching#Whole_Page_Content

http://docforge.com/w/index.php?title=Content_delivery_network&action=edit&redlink=1
http://docforge.com/w/index.php?title=TTL&action=edit&redlink=1
http://docforge.com/wiki/Web_server
http://docforge.com/wiki/Mod_rewrite
http://docforge.com/wiki/AJAX
http://docforge.com/wiki/Clean_URL
http://docforge.com/wiki/Web_application/Caching#Whole_Page_Content

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 17 of 26

to refresh the page. For example, an administrative interface may clear the cache or notify a caching
interface when a database record is inserted or updated.

4.1.3.2. Partial page content

It is often need and necessary to cache fragment of dynamically generated contents on a web page when
possible. If a page is built from various components, and only some of those components are ‘costly’ to
generate, then we can only cache those parts in order to improve overall performance.

If a web application is properly modularized during development, which make it possible that any individual
component are cacheable. In the case of a simplified shopping cart, the products and categories might be
easy to generate, while the user's cart summary on each page can be more expensive due to user
management and cart calculations. On each page but the cart itself, the summary might be cached and
updated upon needed. In CARRE, complex visualisations of the risk factor graph can be cached locally for
performance, since all the risk data is public, but components of the same page referring to a user’s private
data should be generated dynamically, in order to avoid storing private data on an insecure device (such as a
mobile phone).

4.2. Client-side caching

4.2.1. Web application level

Following are the possible caching approach that implemented in the client side.

 Automatically paging the query according to screen size, do not bring back all data at once.

 Paging through a query result is the process of returning the results of a query in smaller subsets of
data, or pages. This is a common practice for displaying results to a user in small, easy-to-manage
chunks.

 To use the Fill method to return a page of data, specify a startRecord parameter, for the first record in
the page of data, and a maxRecords parameter, for the number of records in the page of data.

 Use local storage to cache common query results, and session storage to cache versatile query
results.

 The main problem with HTTP as the main transport layer of the Web is that it is stateless. This means
that when you use an application and then close it, its state will be reset the next time you open it. If
you close an application on your desktop and re-open it, its most recent state is restored.

The state of the interface should be stored. Normally, this is done on the server-side, and you would check the
user name to know which state to revert to. This is where local storage is needed, where a key on the user’s
computer needs to be read when the user returns.

If a Web service allows users with only a certain number of calls per hour but the data does not change all that
often, the information should be stored in local storage and thus keep users from using up the quota. A photo
badge, for example, could pull new images every six hours, rather than every minute.

This is very common when using Web services server-side. Local caching keeps user from being banned from
services, and it also means that when a call to the API fails for some reason, there are still information to be
displayed.

 Use client-side database instead of server roundtrips (e.g. Web SQL Database, IndexedDB).

 Use web workers for CPU-heavy operations in manipulate queries and results.

 Use web sockets to save bandwidth compared to XHR (AJAX), for example, in auto-complete queries.

The web has been largely built around the so-called request/response paradigm of HTTP. A client loads up a
web page and then nothing happens until the user clicks onto the next page. All HTTP communication was
steered by the client, which required user interaction or periodic polling to load new data from the server.
However, all of these work-arounds share one problem: They carry the overhead of HTTP, which doesn't make

http://docforge.com/wiki/Web_application
http://docforge.com/wiki/Modularity

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 18 of 26

them well suited for low latency applications. Think multiplayer first person shooter games in the browser or
any other online game with a real time component.

The WebSocket specification defines an API establishing "socket" connections between a web browser and a
server. In plain words: There is a persistent connection between the client and the server and both parties can
start sending data at any time.

 Use cache manifest for site to cache static resources from query results.

The main differences between the HTML5 cache manifest vs. the traditional HTTP headers20:

 for the cache manifest you need support in the browser

 for the HTTP headers you also need support in the browser of course but it's more universal

 you have more control over the caching with cache manifest

 your website or Web app can work correctly offline with no connection at all

 you can have two version of every resource - for offline and online usage

4.2.2. Web browser level

All the modern browsers have an aggressive cache policy with the purpose of reducing the network traffic and
increase the performances. The last point is really important: to execute operations faster browsers read a set
of information from the response header (for example, Etag, Cache-Control and Date), and, based on their
values, it decides to take the data from the response or from the cache.

Default cache policy must satisfies a request for a resource either by using the cached copy of the resource
or by sending a request for the resource to the server. The action taken is determined by the current cache
policy and the age of the content in the cache. This is the cache level that should be used by most applications.

A cache policy defines rules that are used to determine whether a request can be satisfied using a cached
copy of the requested resource. Applications specify client cache requirements for freshness, but the effective
cache policy is determined by the client cache requirements, the server's content expiration requirements, and
the server's revalidation requirements. The interaction of client cache policy and server requirements always
results in the most conservative cache policy, to help ensure that the freshest content is returned to the client
application.

Cache policies are either location-based or time-based. A location-based cache policy defines the freshness
of cached entries based on where the requested resource can be taken from. A time-based cache policy
defines the freshness of cached entries using the time the resource was retrieved, headers returned with the
resource, and the current time. Most applications can use the default time-based cache policy, which

implements the caching policy specified in RFC 261621.

The cache policy is used to determine if and how long to keep the cached the contents. Here are some widely
used cache policies22:

 Always discard the information that will not be needed for the longest time.

 Least Recently Used (LRU) discard the least recently used items first, need to keep tracking what had
been used.

 Most Recently Used (MRU) discards the most recently used items first. The idea is the older an item
is, the more likely it is to be accessed.

 Least-Frequently used (LFU), counts how often an item is needed, those that are used least often are
discard first.

 Pyramidal Selection Scheme (PSS) was designed by the authors of SLRU to reap the benefits of the
latter while avoiding its high CPU overhead.

20 http://www.html5rocks.com/en/tutorials/speed/quick/
21 http://www.ietf.org
22 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.2906&rep=rep1&type=pdf

http://www.html5rocks.com/en/tutorials/speed/quick/
http://www.ietf.org/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.2906&rep=rep1&type=pdf

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 19 of 26

4.3. Useful tools

Here, we list two tools that will be used in the CARRE implementation.

4.3.1. Redis23

Redis is an open source (BSD licensed), in-memory data structure store, used as database, cache and
message broker. It supports data structures such as strings, hashes, lists, sets,sorted sets with range
queries, bitmaps, hyperloglogs and geospatial indexes with radius queries. Redis has built-in replication, Lua
scripting, LRU eviction, transactions and different levels of on-disk persistence, and provides high availability
via Redis Sentinel and automatic partitioning with Redis Cluster.

Redis is not a plain key-value store, actually it is a data structures server, supporting different kind of values.

What this means is that, while in traditional key-value stores you associated string keys to string values, in

Redis the value is not limited to a simple string, but can also hold more complex data structures.

Redis keys are binary safe, this means that you can use any binary sequence as a key, from a string like "foo"
to the content of a JPEG file. The empty string is also a valid key. The Redis String type is the simplest type
of value you can associate with a Redis key. It is the only data type in Memcached, so it is also very natural
for newcomers to use it in Redis.

Before continuing with more complex data structures, we need to discuss another feature which works
regardless of the value type, and is called Redis expires. Basically you can set a timeout for a key, which is a
limited time to live. When the time to live elapses, the key is automatically destroyed, exactly as if the user
called the DEL command with the key.

4.3.2. Memcached24

Memcached is an open source distributed memory object caching system, generic in nature, but intended for
use in speeding up dynamic web applications by alleviating database load.

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results
of database calls, API calls, or page rendering. Its simple design promotes quick deployment, ease of
development, and solves many problems facing large data caches. Its API is available for most popular
languages.

Memcached is a distributed memory object caching system, generic in nature, but originally intended for use
in speeding up dynamic web applications by alleviating database load. Memcached allows user to take
memory from parts of your system where you have more than you need and make it accessible to areas where
you have less than you need. Memcached also allows user to make better use of the memory.

5. Implementation

5.1. Workflow

As shown in Figure 1, visual analytic retrieves data from RDF and presents them a user-friendly way to help
users understand the informed decision.

23 http://redis.io/
24 http://memcached.org/about

http://redis.io/topics/data-types-intro#strings
http://redis.io/topics/data-types-intro#hashes
http://redis.io/topics/data-types-intro#lists
http://redis.io/topics/data-types-intro#sets
http://redis.io/topics/data-types-intro#sorted-sets
http://redis.io/topics/data-types-intro#bitmaps
http://redis.io/topics/data-types-intro#hyperloglogs
http://redis.io/commands/geoadd
http://redis.io/topics/replication
http://redis.io/commands/eval
http://redis.io/commands/eval
http://redis.io/topics/lru-cache
http://redis.io/topics/transactions
http://redis.io/topics/persistence
http://redis.io/topics/sentinel
http://redis.io/topics/cluster-tutorial
http://redis.io/commands/del
http://redis.io/
http://memcached.org/about

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 20 of 26

Figure 1. Query workflow

5.2. Client-side implementation

 Investigate and evaluate server side query parsing and optimisation (e.g. paging, filtering, ordering)

 Utilise suitable manner which communicate with server to make query more efficient (AJAX,
WebSockets)

o Partial diagram

o Range does not changes very often

o Relevant risks and values

 Build test suite of VM clusters and automated performance benchmark

5.3. Server side implementation

The following steps have been taken to optimise (or support future optimisation of) the repository
implementation:

 The server specification (memory and storage) have been chosen to support best performance from
the Virtuoso RDF store for current use, and predicted use through the life of the project, with scalability
beyond the project designed as an option from the start.

 The choice of Virtuoso as the repository backend was in part based on its scalability to a distributed
environment, if necessary. The logical design of the repository in terms of separate private RDF graphs
per user also promotes scalability. In this respect, the privacy features of the repository also make it
easier to improve performance.

 Common queries for the CARRE use cases are wrapped as methods in the CARRE Web API; this
allows such queries to be optimised for performance without requiring any effort or duplication of work
in application development. As visualisation and decision support services development continues,
the relevant queries are optimised as much as possible by hand.

 Where necessary, for the same (common) queries, each RDF graph is saturated with the terms
relevant to satisfying them. That is to say, inferences are precomputed to ensure that query results
can most often be retrieved by database lookup rather than inference.

 Currently, where common queries relate to external Linked Open Data (such as, for example, looking
up details of the units for a particular measurement), performance is good with queries against the

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 21 of 26

Bioportal25 repository. There remains the option of installing a local copy of Bioportal and querying
against that instead, allowing content to be synced in the background independently of user queries.

 The CARRE RESTful API is implemented using the Django framework26, which includes support for
Memcached. Thus, the results will be cached securely on the server and made available for repeated
(authenticated) queries. This can improve performance on CARRE data, as well as minimising the
need for any remote queries for long-lived external data, such as, e.g., units.

In addition to technical measures to improve query performance, it should also be noted that in practice, none
of the most common visualisation or decision support queries for CARRE involve significant quantities of data
or on-the-fly inference. The entire public risk factor association dataset can be downloaded in its entirety and
cached locally without putting many demands on the client. This data also changes comparatively slowly due
to the clinical scientific and review processes.

With regards to the personal data, the volume of data gathered and stored are anticipated to be large. The
main use of visualisation is to calculate means or trends – an individual’s step count values are less significant
alone for risk calculation than the overall categorisation of a patient as, for example, “highly active” –
categorisation that can be calculated offline on the server rather than on-the-fly. Where individual data must
be retrieved for visualisation of, e.g., a patient’s activity history, the amount to be retrieved is always bounded
by a relevant time period (previous week, previous month, and so on) and so again, only ever involves limited
quantities of data.

5.4. Test and validation

Primarily, Selenium is for automating web applications for testing purposes, but is certainly not limited to just
that. Web-based administration tasks can also be automated as well.Selenium has the support of some of the
largest browser vendors who have taken (or are taking) steps to make Selenium a native part of their browser.
It is also the core technology in countless other browser automation tools, APIs and frameworks.

There are three projects of Selenium:

 Selenium WebDriver: To create robust, browser-based regression automation suites and test, and
scale and distribut scripts across many environment.

 Selenium IDE: Creat quick bug reproduction scripts and create scripts to aid in automation-aided
exploration testing.

 Selenium Grid: Enable running tasks on many servers at the same time, allows testing on multiple
browsers and operation systems in parallel.

The tests can be setup in the above flow utilise Selenium Grid, which aims to test the performance under
various user side configurations.

25 http://bioportal.bioontology.org
26 https://www.djangoproject.com

http://bioportal.bioontology.org/
https://www.djangoproject.com/

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 22 of 26

Figure 2. Testing workflow

5.4.1. Prelimary test

Currently, we have setup the visual analytic interface with functions that described in D5.1. In the next few
months, along with implementation of D5.3, there will be more uses cases, for those performance could be
improved if we adopte the approaches that are described in this document. We conducted a prelimary test on
retrieving data from the RDF repository. In the firtst test was carried out when the network connect is set as
Digital subscriber line (DSL) with the speed of 2MB/s. The broadband is set at the the relatively low level, with
the aim to show clearer the difference of the performance. It worth note that, in the current data repository at
the stage of the system development, CARRE repository had a low usage and with small scale of dataset,
therefore, we purposely scaled down the broadband access to a low level. As shown in Figure 3, we cache
the query data in the local storage.

Figure 3. Screenshot of data that cached in the local storage

The following is code piece, which utilizes local-storage to cache the RDF query results by intercept jQuery
AJAX call.

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 23 of 26

if (window.jQuery && window.location.hash == '#opt') {

 jQueryAjax = jQuery.ajax;

 // only the settings pattern is used

 jQuery.ajax = function (settings) {

 // if (settings.url && settings.url.indexOf('.json') >= 0

 if (localStorage.getItem(settings.url)) {

 var data = JSON.parse(localStorage.getItem(settings.url));

 if (settings.asyc === false && settings.success) {

 // if async is disabled

 settings.success(data);

 } else {

 var deferred = new $.Deferred();

 deferred.resolve([data]);

 // return promise so that outside code cannot reject/resolve the deferred

 return deferred.promise();

 }

 } else {

 // call the jQuery version

 var promise = jQueryAjax(settings);

 promise.done(function(data) {

 localStorage.setItem(settings.url, JSON.stringify(data));

 });

 return promise;

 }

 }

5.4.2. Preminary test 1 – loading time

Figure 4 shows the data retrieving without optimization and Figure 5 shows the data retrieving with the
optimization. As can be seen, the page load time reduced from 3.73s to 2.02s.

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 24 of 26

Figure 4. Loading time before optimization

Figure 5. Loading time after optimization

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 25 of 26

5.4.3. Preminary test 2 – CPU usage

The second test is designed to test the CPU usages. Figure 6 and 7 shows CPU usage before and after
optimization. As can be seen, CPU usage is significantly reduced after the optimisation.

Figure 6. CPU usage before optimization

Figure 7. Applications for profile 2

 D.5.2.Query and Performance Enhancements

FP7-ICT-61140 page 26 of 26

6. Conclusion

This task is to anticipate the future possible technical challenges, such as when there are large number of user
data and large number of user who access the CARRE system. Although, at the current stage and even at the
end of the project, the actucal users and usage will not reach a significant volume, we still believe it is
necessary to take into account of this factor.

The target of Work Package 5 in CARRE project is to provide effective data management and visual analytics
tools to empower patients and medical experts to access, view, understand and analyse patients’ health status
and possible disease progressions.

In this deliverable report of D5.2, we mainly aim to provide some advice for the future implementation. Some
advices for the future implementation will be provided. Initial tests are conducted as a proof-of-concept. The
actual effects of the improvement can also be seen after finishing the task D5.3: Advanced visual analytics
module. The actual effect of the improvement can also be seen after finishing the task D5.3: Advanced visual
analytics module.

