

FP7-ICT-611140 CARRE

Project co-funded by the European Commission
under the Information and Communication Technologies
(ICT) 7th Framework Programme

D.7.2. Aggregator testing and

 RDF repository populated with test data

G. Drosatos, G. Gkotsis, R. Kizlaitis, E. Liu, A. Lukoševičius, V. Marozas, N.

Portokallidis, A. Sološenko, D. Stankevičius, H. Wei

April 2015

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 2 of 49

CARRE Contacts

Project Coordinator: Eleni Kaldoudi kaldoudi@med.duth.gr

Project Manager: George Drosatos gdrosato@ee.duth.gr

DUTH
Democritus University of Thrace

Eleni Kaldoudi kaldoudi@med.duth.gr

OU
The Open University

John Domingue john.domingue@open.ac.uk

BED:
Bedfordshire University

Enjie Liu Enjie.Liu@beds.ac.uk

VULSK:
Vilnius University Hospital Santariskių Klinikos

Domantas Stundys Domantas.Stundys@santa.lt

KTU
Kaunas University of Technology

Arunas Lukosevicius arunas.lukosevicius@ktu.lt

PIAP
Industrial Research Institute for Automation
& Measurements

Roman Szewczyk rszewczyk@piap.pl

Disclaimer

This document contains description of the CARRE project findings, work and products. The authors of this
document have taken any available measure in order for its content to be accurate, consistent and lawful.
However, neither the project consortium as a whole nor the individual partners that implicitly or explicitly
participated in the creation and publication of this document hold any sort of responsibility that might occur as
a result of using its content.

In case you believe that this document harms in any way IPR held by you as a person or as a representative
of an entity, please do notify us immediately.

The content of this publication is the sole responsibility of CARRE consortium and can in no way be taken to
reflect the views of the European Union.

CARRE is a Specific Targeted Research Project partially funded by the European Union,
under FP7-ICT-2013-10, Theme 5.1. “Personalized health, active ageing & independent
living”.

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 3 of 49

Document Control Page

Project

Contract No.: 611140

Acronym: CARRE

Title: Personalized Patient Empowerment and Shared Decision Support
for Cardiorenal Disease and Comorbidities

Type: STREP

Start: 1 November 2013

End: 31 October 2016

Programme: FP7-ICT-2013.5.1

Website: http://www.carre-project.eu/

Deliverable

Deliverable No.: D.7.2

Deliverable Title: Aggregator testing and RDF repository populated with test data

Responsible Partner: KTU – Vaidotas Marozas

Authors:
G. Drosatos, G. Gkotsis, E. Liu, R. Kizlaitis, A. Lukoševičius, V. Marozas,
N. Portokallidis, A. Sološenko, D. Stankevičius, H. Wei

Input from: All partners

Peer Reviewers: Jan Piwiński, Xia Zhao, Eleni Kaldoudi

Task: T.7.2. Aggregator testing and integration

Task duration: 5 months: 1 December 2014 to 30 April 2015

Work Package: WP7: Integration & Evaluation

Work Package Leader: VULSK – Romualdas Kizlaitis

Due Date: 30 April 2015

Actual Delivery Date: 6 May 2015

Dissemination Level: PU

Nature: P & R

Files and format: Deliverable report: 1 pdf file

Software: Updated versions of the software of all aggregators (initially delivered in
D.3.2, D.3.3 and D.3.4) and RDF repositories (initially delivered in D.4.1.) populated
with test data. All software versions are available from project site http://www.carre-
project.eu/innovation/breakthroughs

Version: 03

Status: Draft

 Consortium reviewed

 WP leader accepted

 Coordinator accepted

 EC accepted

http://www.carre-project.eu/
http://www.carre-project.eu/innovation/breakthroughs
http://www.carre-project.eu/innovation/breakthroughs

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 4 of 49

Document Revision History

Version Date Modifications Contributors

v01.0 09 March 2015 Deliverable outline V. Marozas

v01.1 12 March 2015 Deliverable outline review V. Marozas, A. Lukoševičius, D.
Stankevičius

v01.1 15 March 2015 Content added V. Marozas

v01.1 16 March 2015 Content added V. Marozas, A. Sološenko

v01.2 24 March 2015 Outline modification according to E. Kaldoudi review V. Marozas

v01.3 30 March 2015 New content added / modifications A. Sološenko

v01.4 31 March 2015 New content added / modifications V. Marozas

v01.5 07 April 2015 New content added / modifications in Chapter 3 V. Marozas, D. Stankevičius

v01.5 08 April 2015 New content added / modifications in Chapter 3 A. Sološenko, V. Marozas,

v01.6 09 April 2015 Outline modification V. Marozas, D. Stankevičius

v01.6 15 April 2015 New content added / modifications in Chapter 3 A. Sološenko

v01.7 20 April 2015 New content added in Chapters 3 and 8 G. Gkotsis

v01.8 21 April 2015 New content added in Subsection 5.3 G. Drosatos

v01.8 22 April 2015 New content added in Chapter 3 / formatting A. Sološenko, V. Marozas

v01.9 24 April 2015 New content added in Subsection 6.2 / formatting E. Liu, H. Wei

v02.0 25 April 2015 New content added in Subsection 5.2 / formatting R. Kizlaitis, V. Marozas

v02.1 26 April 2015 New content added in Chapters 4, 7 / formatting G. Gkotsis, A. Sološenko

v02.2 27 April 2015 New content added in Chapters 1, 2, finalising /
formatting

V. Marozas, D. Stankevičius

v02.3 28 April 2015 New content added in Subsection 6.2 / formatting N. Portokallidis

v02.4 29 April 2015 Response to reviews V. Marozas

v02.5 30 April 2015 Response to reviews All authors

v03 6 May 2015 Editing to conform to deliverable format E. Kaldoudi

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 5 of 49

Table of Contents

Executive Summary ... 7

Terms and Definitions ... 8

1. Introduction .. 9

2. Development of generic testing plan for aggregators software ... 9

2.1. Review of software testing methodologies and techniques .. 9

2.2. Generic testing plan for all aggregators .. 11

3. Testing of registration and login to CARRE system .. 12

3.1. Specific testing plan and results .. 12

3.2. Summary of testing results .. 12

4. Testing of sensors data aggregators ... 12

4.1. Specific testing plan and results .. 13

4.2. Sensor data and meta-data populated in private repository ... 15

4.3. Summary of testing results .. 17

5. Testing of Aggregators for Personal Medical & Lifestyle Data ... 18

5.1. Personal Health Records Aggregator ... 18

5.1.1. Specific testing plan and results .. 18

5.1.2. Data and meta-data populated in private repository .. 20

5.1.3. Summary of testing results .. 21

5.2. Web Lifestyle Data Aggregator ... 21

5.2.1. Specific testing plan and results .. 21

5.2.2. Data and meta-data populated in private repository .. 24

5.2.3. Summary of testing results .. 24

6. Testing of Aggregators for Medical Scientific and Educational Data .. 26

6.1. Medical Evidence Data Aggregator ... 26

6.1.1. Specific testing plan and results .. 26

6.1.2. Data and meta-data populated in public repository ... 30

6.1.3. Summary of testing results .. 30

6.2. Educational Resource Aggregator .. 31

6.2.1. Specific testing plan and results .. 32

6.2.2. Data and meta-data populated in public repository ... 38

6.2.3. Automated software testing and code optimizations ... 41

6.2.4. Summary of testing results .. 43

7. Testing of RESTful API .. 44

7.1. Specific testing methodology and tools ... 44

7.2. Summary report of CARRE’s RESTful API performance testing .. 46

Annex 1 Beta Testers Consent Form ... 47

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 6 of 49

List of Figures

Figure 1. A screenshot of CARRE Educational Resources aggregator on Google Nexus 6 37

Figure 2. A screenshot of CARRE Educational Resources aggregator on iPad 4th gen 37

Figure 3. A screenshot of CARRE Educational Resources aggregator on Mac OS X – Chrome browser 38

Figure 4. Screenshot of the testing job .. 42

Figure 5. Screenshot of the implemented tests ... 42

Figure 6. Diagnostic results before optimization ... 43

Figure 7. Diagnostic results after optimization .. 43

Figure 8. A screenshot of Apache JMeter configuration. .. 45

List of Tables
Table 1. Test scenarios and test cases of functional and non-functional testing of the X data aggregators . 11

Table 2. Test scenarios and test cases of functional testing for Registration and Login to CARRE System . 12

Table 3. Test scenarios and test cases of functional testing of Sensor Data Aggregator 13

Table 4. Test scenarios and test cases of non-functional testing of sensor data aggregator 14

Table 5. Distribution of sensor devices among the test trial subjects ... 16

Table 6. SPARQL query for counting the number of triples stored in CARRE RDF repository 16

Table 7. SPARQL query to get the graph – level overview of data stored in CARRE Private RDF repository16

Table 8. The graphs in CARRE Private RDF repository and associated numbers of data triples 17

Table 9. Test scenarios and test cases of functional testing of Personal Health Record Aggregator 18

Table 10. Unit testing of Personal Health Record Aggregator .. 19

Table 11. Tests for Personal Health Record Aggregator plugins .. 20

Table 12. Test scenarios and test cases of functional testing of Web Lifestyle Data Aggregator. 21

Table 13. Test scenarios and test cases of non-functional testing of Web Lifestyle Data Aggregator. 22

Table 14. Web lifestyle related data and metadata populated in user local database and in private RDF. 24

Table 15. Discussion and solutions about the test cases with issues. .. 25

Table 16. Test scenarios and test cases of functional testing of Medical Evidence Data Aggregator. 26

Table 17. Test scenarios and test cases of non-functional testing of Medical Evidence Data Aggregator 29

Table 18. Discussion and solutions about the test cases with issues. .. 30

Table 19. Test scenarios and test cases of functional testing of Educational Resource Aggregator. 32

Table 20. Test scenarios and test cases of non-functional testing of Educational Resource Aggregator. 34

Table 21. SPARQL query to count all educational material per risk element ... 38

Table 22. The SPARQL query results – the number of educational material per risk element 38

Table 23. SPARQL query to count all educational material for each web source... 39

Table 24. The SPARQL query results – the number of educational material for each web source 39

Table 25. The SPARQL query to count all predicates from the educational resource ontology 40

Table 26. The SPARQL query results – the number of properties of the MERA ontology 40

Table 27. The SPARQL query to count all educational material linking to CARRE risk elements 41

Table 28. The SPARQL query results: number of educational material linking to CARRE risk elements 41

Table 29. The SPARQL query to count all triples inserted by Educational Resource Aggregator 41

Table 30. The SPARQL query results: number of triples inserted by Educational Resource Aggregator 41

Table 31. Discussion and solutions about the test cases with issues. .. 43

Table 32: Apache JMeter summary report for CARRE's RESTFul API. ... 46

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 7 of 49

Executive Summary

This deliverable reports on integration and testing of the CARRE aggregators and the CARRE RDF repository
population with test data (which will be used for development of visual analytics and decision support tools).
First, a review of software testing methodologies was accomplished and a generic testing plan was developed.
Then the generic testing plan was specialised for each aggregator. The specialised testing plans in the form
of numbered test scenarios and test cases are presented together with testing results in respective tables.
Testing results are discussed in short summaries for each of the tested software component. A Participant
Consent Form was developed to get informed consent from healthy participants of the testing. Ten volunteers
connected their devices and application based sensors to CARRE system and populated the private repository
with 2.2 millions of RDF triples of personal data. The new versions of data aggregators’ source code were
developed as the part of the performed task at this stage of the project.

About CARRE

CARRE is an EU FP7-ICT funded project with the goal to provide innovative means for the management
of comorbidities (multiple co-occurring medical conditions), especially in the case of chronic cardiac and renal
disease patients or persons with increased risk of such conditions.

Sources of medical and other knowledge will be semantically linked with sensor outputs to provide clinical
information personalised to the individual patient, so as to be able to track the progression and interactions of
comorbid conditions. Visual analytics will be employed so that patients and clinicians will be able to visualise,
understand and interact with this linked knowledge and also take advantage of personalised empowerment
services supported by a dedicated decision support system.

The ultimate goal is to provide the means for patients with comorbidities to take an active role in care
processes, including self-care and shared decision-making, and also to support medical professionals in
understanding and treating comorbidities via an integrative approach.

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 8 of 49

Terms and Definitions

The following are definitions of terms, abbreviations and acronyms used in this document.

Term Definition

API Application Programming Interface - set of routines, protocols, and tools for building software
applications.

App(s) Short term casually used for Application(s)

GUID A Globally Unique Identifier is a unique reference number used as an identifier in computer
software.

HTTP Hyper Text Transfer Protocol – message formatting and transmitting protocol used by World
Wide Web

RDF Resource Description Format - framework for how to describe any data or Internet resource
and its content.

REST Representation State Transfer – a simple stateless architecture style that generally runs
over HTTP used for creating scalable web services

SPARQL Protocol and RDF Query Language – a semantic query language able to retrieve and
manipulate data stored in RDF format

SQL Structured Query Language – programming language designed for managing data in
relational databases

URI Uniform Resource Identifier – string of characters used to identify a name of a resource

URL Uniform Resource Locator - a reference to a resource that specifies the location of the

resource on a computer network and a mechanism for retrieving it.

XML Extensible Markup Language – a markup language that defines a set of rules for encoding

documents in a format which is both human and machine readable.

http://en.wikipedia.org/wiki/Software_application
http://en.wikipedia.org/wiki/Software_application
http://en.wikipedia.org/wiki/Web_resource
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/File_format
http://en.wikipedia.org/wiki/Human-readable_medium
http://en.wikipedia.org/wiki/Machine-readable_data

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 9 of 49

1. Introduction

This document is a report on the project Task 7.2. “Aggregator testing and integration”. It is based on and uses
information provided in previous project deliverables:

 D3.2. Sensors and Aggregators for Personal Sensor Data

 D3.3. Aggregators for personal medical & lifestyle data

 D3.4. Aggregators for medical scientific/educational data from on-line sources

and provides the input to the tasks T.4.1, T.7.3.

The aim of Task 7.2 is to ensure that the (meta) data aggregators developed in WP3 are integrated, tested for
functionality and bugs and populate the RDF repositories developed in WP4 with test user generated data.
This data will be used subsequently for development of visual analytics and decision support services.

The report is organised in seven sections. The second section presents a review of software testing
methodologies, which guides the development of a generic testing plan appropriate for this stage of the project.
The third section presents the results of software testing, starting by the component “Registration and Login
to CARRE System”. Specific testing plan and results for Sensors Data Aggregator testing are presented in
Section 4. Section 5 presents testing plan and results of Aggregators for Personal Health Records and Life
Style Data. Section 6 presents testing plan and results of Aggregators for Medical Scientific and Educational
data. The final section presents performance evaluation results of CARRE RESTful API. The usage
documentation of this API is disclosed in the deliverable D.4.1 “Semantic Repository Design &
Implementation”.

As described in several circumstances in this document, some of the tests performed and test data collected
for this deliverable involves participation of and data generation by healthy volunteers. All these volunteers
were project team members, fully aware and informed about the data collection and archiving specifics and
the rest of the technical issues of this projects. Additionally, they have all agreed to participate in tests and test
data collection freely and have signed an appropriate consent form. The Annex 1 of the deliverable presents
the Participant Consent Form developed for the volunteers participating in the data collection test. All signed
consent forms are retained by the Project Coordinator.

Additional software testing for the visual analytics and decision support services is planed in forthcoming tasks:
Task 5.1. “Interactive visual interface” and Task 7.3. “System and Service integration”.

2. Development of generic testing plan for aggregators software

2.1. Review of software testing methodologies and techniques

Software testing is the process of analysing a software component to detect the differences between existing
and required conditions (i.e. bugs) and to evaluate the features of the software component1. During the years,
software testing developed large body of theory, testing methodologies23, techniques and standards1,4. It even
became as an independent discipline in software development.

The software testing standard4 discerns two basic classes of software testing, black box testing and white box
testing. Black box testing (also called functional testing) is testing that ignores the internal mechanism of a
system or component and focuses solely on the outputs generated in response to selected inputs and
execution conditions. White box testing (also called structural testing and glass box testing) is testing that takes
into account the internal mechanism of a system or component. The classes of testing are related to colours

1 IEEE, "ANSI/IEEE Standard 1008-1987, IEEE Standard for Software Unit Testing," no., 1986.
2 Hong Zhu; Yufeng Zhang, "Collaborative Testing of Web Services," Services Computing, IEEE Transactions on , vol.5,

no.1, pp.116,130, Jan.-March 2012
3 M. Kaur, R. Singh “A Review of Software Testing Techniques”, International Journal of Electronic and Electrical

Engineering, ISSN 0974-2174, Volume 7, Number 5 (2014), pp. 463-474
4 IEEE Draft International Standard for Software and Systems Engineering--Software Testing--Part 4: Test Techniques,"

IEEE P29119-4/DIS2-Feb2014 , vol., no., pp.1,139, April 23 2014.

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 10 of 49

(black versus white) to depict the opacity of the code to the testers. In black box testing, the software tester
does not have and does not need access to the source code itself. The code is considered to be a “black box”
to the tester who can’t see inside the box. The tester knows only that information can be input into to the black
box, and the black box will send something back out. Based on the requirements knowledge, the tester knows
what to expect the black box to send out and tests to make sure the black box sends out what it is supposed
to send out. Alternatively, white box testing focuses on the internal structure of the software code. The white
box tester (most often the developer of the code himself) knows what the code looks like and writes test cases
by executing methods with certain parameters. Black box testing is often used for validation which is supposed
to answer the question are we building the right software? White box testing is often used for verification - are
we building the software right?

In between of black-box and white-box software testing approaches, some discern grey-box testing. Grey-box
is a technique to test the software application when limited knowledge of the internal working (data structures
and algorithms) of an application is used to design tests, while executing those tests at the user or black-box
level5. A grey-box tester is permitted to set up an isolated testing environment with activities such as seeding
database. The tester can observe the state of the product being tested after performing certain actions such
as executing SQL statements against the database and then executing queries to ensure that the expected
changes have been reflected. Grey-box testing implements test scenarios, based on limited information. This

will particularly apply to data type handling, exception handling, and so on.

Yet another software testing methodology is exploratory testing6. The exploratory testing can be described as
simultaneous learning, test design and test execution. The main advantage of exploratory testing is that less
preparation is needed, important bugs are found quickly, and at execution time, the approach tends to be more
intellectually stimulating than execution of scripted tests (test cases). Another major benefit is that testers can
use deductive reasoning based on the results of previous results to guide their future testing on the fly. This
also accelerates bug detection when used intelligently. Exploratory testing is particularly suitable if
requirements and specifications are incomplete, or if there is lack of time.

Usually software components depend on other system parts, which are not developed yet. To support software
testing in such cases auxiliary code or data – scaffolding code – may be used. This is code that simulates the
functions of components that do not exist yet and allow the program to execute7. Scaffolding code includes
writing stubs and test drivers. Stubs are modules that simulate components that aren’t written yet, formally
defined as a computer program statement substituting for the inner body of a software module that is or will
be defined elsewhere7. Test drivers are defined as software modules provide test inputs, controls, and monitor
execution and report test results. The third concept to support unfinished software testing is mock objects:
software code and data that are able to temporarily substitute the domain code and emulate the real code.

Test planning should be performed throughout development cycle. A test plan is a document, which identifies
test items, the features and functions to be tested and other activities during testing process. Important
components of the test plan are the individual test scenarios and test cases. A test case is a set of test inputs,
execution conditions, and expected results developed for a particular objective, such as to exercise a particular
program path or to verify compliance with a specific requirement. A test scenario is a group of related test
cases. Some type of test planning template is usually used to organise the testing plan and testing results.
The test plan template adopted in our report is shown in Table 1.

We have defined the format of tables and the naming style (no) of test scenarios and cases. The following
naming style of the test scenario TS_X_Y_Z is used:

 TS: Test scenario;

 X: F or N i.e. functional or non-functional testing;

 Y: software component (aggregator) name, e.g. L - lifestyle;

 Z: a sequential number, e.g. 01.

5 M. E. Khan, F. Khan “A Comparative Study of White Box, Black Box and Grey Box Testing Techniques”, International
Journal of Advanced Computer Science and Applications, Vol. 3, No.6, 2012.

6 Itkonen, J.; Mantyla, M.V.; Lassenius, C., "The Role of the Tester's Knowledge in Exploratory Software Testing," Software
Engineering, IEEE Transactions on , vol.39, no.5, pp.707,724, May 2013

7 Glenford J. Myers, Corey Sandler, Tom Badgett “The Art of Software Testing”, 3rd Edition, ISBN: 978-1-118-03196-4
240 pages December 2011

http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Exception_handling
http://en.wikipedia.org/wiki/Software_requirement
http://en.wikipedia.org/wiki/Program_specification

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 11 of 49

As for the test cases: TC - X

 TC: Test case;

 X: a sequential number, e.g. 01.

The particular case is referred to like this: TS_F_L_01.TC – 01.

Table 1. Test scenarios and test cases of functional and non-functional testing of the X data aggregators

No Test Scenario Test Case Results and
Comments

No Description No Description

T
S

_
X

_
Y

_
Z

Test scenario
description

TC-01 Test case description
Pass / Fail
(description of
failure)

We will use a mixture of software testing methodologies in this report and during lifetime of the project. We will
use mock objects for testing software components, which depend on other components not developed, yet
(e.g. visual analytics and services). We will use test planning to increase test repeatability and clarity. In
summary, we should keep in mind that “Program testing can be used to show the presence of bugs, but never
to show their absence!”8

2.2. Generic testing plan for all aggregators

The generic testing plan is intended for all CARRE system aggregators. The main task before following the
general testing plan is to define specifications, use cases and testing environment of the software application
to be tested. Generic testing plan consists of functional and non-functional testing phases:

Functional testing:

1. Functionality testing – testing of all intended functions of the certain application component. Example:
password recovery functionality.

2. Integration testing – verification that all software application components interact with each other as
intended. Example: aggregation of certain data types from different sources.

3. API testing – testing of the API functionality. Example: get intended output on certain API call.

Non-functional testing:

1. Scalability testing – verification of the ability to scale and expand features of the application if
demanded. Example: adapt to increasing workload.

2. Data validation testing – verification that certain software application features use intended datatypes
and their ranges. Example: adequate minimum and maximum ranges of the certain data type, allowed
datatypes, etc.

3. Compatibility testing – verification that web application is compatible with intended platforms. Example:
browser (Chrome, Opera, Firefox) compatibility.

4. Usability testing – evaluation of easiness to learn and use software application. Example: User
interface control.

8 E. W. Dijkstra, "Notes on Structured Programming," Technological University Eindhoven T.H. Report 70-WSK-03, Second edition,

April 1970.

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 12 of 49

5. Security testing – verification weather web application is vulnerable to attacks and weather there are
no information leaks. Example: login to the web application without authorization, unauthorized data
retrieval, authorization circumvention, etc.

6. Performance testing – web application and its components response under various load conditions.
Example: time taken to visualize large amount of data.

3. Testing of registration and login to CARRE system

3.1. Specific testing plan and results

This section deals with the functional testing of new user registration and login to the CARRE system. Since
user registration and login are common among all the aggregators, they are tested independently from the
other CARRE software application components. Table 2 summarizes test scenarios and test cases of
functional testing for Registration and Login to CARRE System.

Table 2. Test scenarios and test cases of functional testing for Registration and Login to CARRE System

Test Scenario Test Case Results and
Comments No Description No Description

T
S

_
F

_
R

L
_
0

1

User
registration

TC-01 User registers Pass

TC-02 Cancel submission of information for registering Pass

TC-03 Provide insufficient data Pass

TC-04 Register existing user Pass

T
S

_
F

_
R

L
_
0

2

User login

TC-01 Normal login Pass

TC-02 Cancel submission of login information Pass

TC-03 Provide insufficient data Pass

TC-04 Account recovery procedure Pass

3.2. Summary of testing results

All intended functions of the user registration and login module are functioning as planed except for the
verification of the new user registration, which is not implemented yet. There are some minor bugs, which
occur after logging into the CARRE system, specifically error messages:

error trapped in error: function(msg, url, line);

msg = [object Object], url = error, line =;

No security issues during logging in and recovering account were noticed during the testing.

4. Testing of sensors data aggregators

This section deals with functional and non-functional testing of the sensor data aggregator. The aim of the
functional testing is to verify aggregator readiness to execute functions and user experience covered in the
functional requirements and specifications. The testing includes functions such as user commands, data
manipulation and fetching from different 3rd party clouds, integration etc. The aim of the non-functional testing
is the verification of the sensor data aggregators’ quality characteristics such as usability, performance,

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 13 of 49

security, etc. The task of non-functional testing is to evaluate the readiness of a system according to the various
criteria (based on the requirements), which are not covered by functional testing and demonstrate sensor data
aggregators’ behaviour.

4.1. Specific testing plan and results

Table 3 presents functional testing results of the sensor aggregator.

Table 3. Test scenarios and test cases of functional testing of Sensor Data Aggregator

Test Scenario Test Case Results and
Comments No Description No Description

T
S

_
F

_
S

_
0

1

Subscription to 3rd
party sensor / app
data cloud

TC-01 Fitbit Pass9

TC-02 Withings Pass9

TC-03 iHealth Pass9

TC-04 Misfit Pass9

TC-05 Google Fit Pass9

TC-06 Medisana Pass9

TC-07 Moves Pass9

TC-08 Google Calendar Pass9

T
S

_
F

_
S

_
0

2

Unsubscription of 3rd
party sensor / app
data cloud

TC-01 Fitbit Pass10

TC-02 Withings Pass10

TC-03 iHealth Pass10

TC-04 Misfit Pass10

TC-05 Google Fit Pass10

TC-06 Medisana Pass10

TC-07 Moves Pass10

TC-08 Google Calendar Pass10

T
S

_
F

_
S

_
0

3

Integration with 3rd
party sensor / App
data cloud

TC-01 Fitbit Pass11

TC-02 iHealth Pass11

TC-03 Misfit Pass11

TC-04 Google Fit Pass11

TC-05 Medisana Pass11

TC-06 Google Calendar Pass11

T
S

_
F

_

S
_
0

3

SPARQL query

TC-01 Get all data for specific user Pass

TC-02 Get 100 randomly selected RDF triples for
specific user

Pass

9 Pass – the label near the sensor provider icon in the dashboard of CARRE Devices changes to “Connected”. Fail – no
change.

10 Pass – the label near the sensor provider icon in the dashboard of CARRE Devices changes to “Connect”. Fail – no
change.

11 Pass – the data from sensor provider is available in CARRE Private repository, Fail – not available.

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 14 of 49

TC-03 Get all steps values for specific user Pass

TC-04 Get manufacturers names from which
specific user gets step counts

Pass

TC-05 Get Fitbit measured step counts for
specific user

Pass

TC-06 Get iHealth measured step counts for
specific user

Pass

TC-07 Get Misfit measured step counts for
specific user

Pass

TC-08 Get Google Fit measured step counts for
specific user

Pass

TC-09 Get Medisana measured step counts for
specific user

Pass

TC-10 Get average step count across all
manufacturers for specific user

Pass

TC-11 Get average Fitbit step count for specific
user

Pass

TC-12 Get average iHealth step count for specific
user

Pass

TC-13 Get average Misfit step count for specific
user

Pass

TC-14 Get average Google Fit step count for
specific user

Pass

TC-15 Get average Medisana step count for
specific user

Pass

T
S

_
F

_
S

_
0

4

CARRE Devices API

TC-01 POST /query Pass

TC-02 POST /deleteUser Pass

TC-03 GET /measurement Pass

TC-04 GET /measurementsList Pass

TC-05 GET /dailyMeasurement Pass

TC-06 GET /userProfile Pass

TC-07 GET /authenticate Pass

TC-08 GET /ical.ics Pass

TC-09 GET /icalToken.ics Pass

Table 4 presents non-functional testing results of the sensor aggregator.

Table 4. Test scenarios and test cases of non-functional testing of sensor data aggregator

Test Scenario Test Case Results and
Comments

No Description No Description

T
S

_
N

_
S

_
0
1

Data validation
testing

TC-01 Allowed data character check Pass

TC-02 Data type check Pass

TC-03 Data consistency check Pass

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 15 of 49

TC-04 Data range check Pass

TC-05 Data limit check Pass

T
S

_
N

_
S

_
0
2

Compatibility with
different internet
browsers

TC-01 Desktop Opera browser Pass

TC-02 Desktop Chrome browser Pass

TC-03 Desktop Firefox browser Pass

TC-04 Desktop Internet Explorer Pass

TC-05 Android Browser Pass

TC-06 Android Opera Pass

TC-07 Android Opera Mini Pass

TC-08 Android Chrome Pass

TC-09 Android Firefox Pass

T
S

_
N

_
S

_
0
3

User interface testing

TC-01 UI content check Pass

TC-02 UI images check Pass

TC-03 UI instructions check Pass

TC-04 UI navigation check Pass

TC-05 UI usability check Pass

TC-06 URL manipulation Pass

T
S

_
N

_
S

_
0

4

Security testing

TC-01 URL manipulation Pass

TC-02 SPRQL injection Pass

T
S

_
N

_
S

_
0
5

Performance testing TC-01 Data visualization performance Pass

4.2. Sensor data and meta-data populated in private repository

Ten subjects (project participants) were recruited to generate sensor data and populate it to private repository
(Table 5). Each participant filled in and signed the Participant Consent Form (see Annex 1). All participating
subjects created private accounts in CARRE system12 and connected their devices accounts in commercial
cloud services with CARRE. All sensor devices were purchased by using CARRE budget except Apps based
sensors, which were private smart phones with installed Google Fit and Moves applications for physical activity
monitoring.

Data was being generated and pushed/stored in the CARRE Private repository for more than 1 month -
(18/03/2015 - 22/04/2015).

12 https://carre.kmi.open.ac.uk/devices

https://carre.kmi.open.ac.uk/devices

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 16 of 49

Table 5. Distribution of sensor devices among the test trial subjects

Subject
Weight and body

composition
Physical activity, Glucometer

Blood
pressure

Electrocardiography
AF

v*****m Fitbit Aria
Fitbit One, Moves,

Google Fit
iHealth BG5 iHealth BP5 eMotion Faros

d*****s Medisana BS 440
Withings, Moves,

Google Fit
Medisana

MediTouch2
Medisana

BU575
-

d*****j MedisanaTarget
iHealth, Moves,

Google Fit
- - eMotion Faros

a*****l Withings Scales
Fitbit Flex, Moves,

Google Fit
-

Withings
Blood

Pressure
eMotion Faros

s*****d iHealth HS5
Medisana VIFIT,

Moves, Google Fit
- - -

a*****s - Moves, Google Fit - - -

a*****m Fitbit Aria
Fitbit One, Moves,

Google Fit
- - -

a*****t -
Fitbit One, Moves,

Google Fit
- - -

j*****p - -
Medisana

MediTouch2
- -

d*****s - Fitbit One - - -

Table 6 shows SPARQL query used for calculation of the total number of triples in CARRE repository.

Table 6. SPARQL query for counting the number of triples stored in CARRE RDF repository

SELECT (count(*) as ?count) WHERE {

 ?s ?p ?o .

}

2247812 triples (as for 22/04/2015)

Graph – level overview (graph names and number of triples in each graph) can be obtained by using SPARQL
query (Table 7) executed in the CARRE SPARQL end–point.

Table 7. SPARQL query to get the graph – level overview of data stored in CARRE Private RDF repository

SELECT ?graphName count(*) as ?cnt

WHERE {

 GRAPH ?graphName {

 ?s ?p ?o

 }

}

group by ?graphName

order by DESC(?cnt)

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 17 of 49

Table 8 shows the number of data triples contained in CARRE personalised graphs.

Table 8. The graphs in CARRE Private RDF repository and associated numbers of data triples

Graph name
No of data triples in the

repository

https://carre.kmi.open.ac.uk/users/athird 1315996

https://carre.kmi.open.ac.uk/users/domantas 179333

https://carre.kmi.open.ac.uk/users/baprice 169262

https://carre.kmi.open.ac.uk/users/vaimaro 154333

https://carre.kmi.open.ac.uk/users/daista 87391

https://carre.kmi.open.ac.uk/users/rugodzinski 60717

https://carre.kmi.open.ac.uk/users/JPiwinski 51976

https://carre.kmi.open.ac.uk/users/Alukos 29586

https://carre.kmi.open.ac.uk/users/gkotsis 22350

https://carre.kmi.open.ac.uk/users/a951753m 17197

https://carre.kmi.open.ac.uk/users/jdomingue 11939

https://carre.kmi.open.ac.uk/users/Saulis 6825

https://carre.kmi.open.ac.uk/users/drosatosgr 2640

https://carre.kmi.open.ac.uk/users/darjege 592

https://carre.kmi.open.ac.uk/users/Andrius 137

https://carre.kmi.open.ac.uk/users/Mindaugasu 19

https://carre.kmi.open.ac.uk/users/nporto 17

https://carre.kmi.open.ac.uk/users/DamianD 17

https://carre.kmi.open.ac.uk/users/romask 6

https://carre.kmi.open.ac.uk/users/weihui 6

4.3. Summary of testing results

Functional and non-functional tests of the CARRE sensor aggregators shows that the implemented
aggregators provide the required functionality:

 They integrate 3rd party vendors’ clouds;

 They fetch data about the specific users;

 And they store this data into the private repository.

All API functions and SPARQL queries work as intended. From 10 test scenarios and 69 cases considered
(Table 3 and Table 4), all 69 test cases passed successfully. The updated source code of the sensor
aggregator is available at: https://www.carre-project.eu/innovation/sensor-aggregator/ and the web application
of the sensor aggregator itself is available at: https://carre.kmi.open.ac.uk/devices/.

https://carre.kmi.open.ac.uk/users/athird
https://carre.kmi.open.ac.uk/users/domantas
https://carre.kmi.open.ac.uk/users/baprice
https://carre.kmi.open.ac.uk/users/vaimaro
https://carre.kmi.open.ac.uk/users/daista
https://carre.kmi.open.ac.uk/users/rugodzinski
https://carre.kmi.open.ac.uk/users/JPiwinski
https://carre.kmi.open.ac.uk/users/Alukos
https://carre.kmi.open.ac.uk/users/gkotsis
https://carre.kmi.open.ac.uk/users/a951753m
https://carre.kmi.open.ac.uk/users/jdomingue
https://carre.kmi.open.ac.uk/users/Saulis
https://carre.kmi.open.ac.uk/users/drosatosgr
https://carre.kmi.open.ac.uk/users/darjege
https://carre.kmi.open.ac.uk/users/Andrius
https://carre.kmi.open.ac.uk/users/Mindaugasu
https://carre.kmi.open.ac.uk/users/nporto
https://carre.kmi.open.ac.uk/users/DamianD
https://carre.kmi.open.ac.uk/users/romask
https://carre.kmi.open.ac.uk/users/weihui
https://www.carre-project.eu/innovation/sensor-aggregator/

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 18 of 49

5. Testing of Aggregators for Personal Medical & Lifestyle Data

5.1. Personal Health Records Aggregator

Personal Health Records aggregator is to: 1) fetch the list of data understood and needed by the CARRE
repository, 2) collect data from the configured PHR sources, 3) unify and merge the data as configured and,
4) post it to CARRE endpoint.

Current design approach of the PHR aggregator is modular and highly extendible via pluggable program
behaviour modifying modules (i.e. plugins). Therefore mostly unit tests are used (i.e. testing the algorithm flow
of the specific unit of the system, e.g. whether the specific plugin group is loaded upon program execution and
called in a predefined manner), with a few functional ones testing larger parts of the system.

As the results provided by the system greatly depend on the implementation of specific plugins (e.g. different
PHR input plugins, different data output format plugins, different data merging plugins), whose implementations
and requirements could be subject to change. Therefore, their specific implementation test results are not
included, but the general testing guidelines of each plugin group are.

Because of the reason outlined above, mock data adhering to the expected data structure and containing
values, which result in predictable output, was used for most tests. For example, unit test testing whether the
configuration loading mechanism works would use a mock configurator plugin, which would return predefined,
hard-coded configuration adhering to Configuration data type – and we would assert whether the configuration
returned is equal to hard-coded in a mock configurator plugin.

5.1.1. Specific testing plan and results

Table 9 presents scenarios and cases for functional testing of Personal Health Record Aggregator.

Table 9. Test scenarios and test cases of functional testing of Personal Health Record Aggregator

No Goal Test Scenario Test Case
Results and
Comments

T
-0

1
 Assert that available observables

are retrieved from CARRE
repository

Load CARRE configurator, check
configuration data units.

CARRE
repository.

Pass.

T
-0

2

Assert that PHR sources provide
relevant data.

Load test configuration, run PHR
data retrieval, check results.

Mock data. Pass with
mock data.

T
-0

3
 Assert that data retrieved from

two or more PHRs is merged
correctly.

Load test configuration, retrieve
test PHR data, load test merge
plugin, merge data, check results.

Mock data. Pass with
mock data.

T
-0

4
 Assert that resource unification

module validates data according
to configuration.

Load test configuration, retrieve
mock PHR data with data not
specified in test configuration,
check end-data.

Mock data Pass with
mock data.

T
-0

5

Assert that output module
exports data in correct format.

Load test configuration, retrieve
test PHR data, merge data,
process it through output module,
check results.

Mock data Pass with
mock data.

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 19 of 49

Table 10 presents Unit testing results of PHR aggregator.

Table 10. Unit testing of Personal Health Record Aggregator

No. Unit Unit test Test Case
Results and
Comments

U
-0

1

Configuration UC-01 Load configurator plugins. Pass with mock data.

UC-02 Configuration is returned by configurator
plugins.

Pass with mock data.

U
-0

2

PHR source US-01 Load PHR source provider plugins. Pass with mock data.

US-02 PHR source provider plugins return PHR
data.

Pass with mock data.

US-03 PHR source provider plugins adhere to
configuration provided by the configurator.

Pass with mock data

U
-0

3

Resource
unification
module

UR-01 Module loads configurators. Pass

UR-02 Module retrieves configuration. Pass

UR-03 Module loads PHR source providers. Pass

UR-04 Module calls PHR source providers with
configuration.

Pass

UR-05 Module loads data merge plugins. Pass

UR-06 Module merges data using merge plugins. Pass with mock data.

UR-07 Module loads output provider plugins. Pass with mock data.

UR-08 Module calls output provider plugins with
merged data.

Pass with mock data.

U
-0

4
 Merger UM-01 Load merge provider plugins. Pass with mock data.

UM-02 Merge provider plugins return merged data. Pass with mock data.

U
-0

5
 Output UO-01 Load output provider plugins. Pass with mock data.

UO-02 Output provider plugins return success state
of the output.

Pass with mock data.

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 20 of 49

Table 11 shows tests for PHR aggregator software plugins that might be developed in the future by third parties
in order to accommodate other PHR systems currently not included.

Table 11. Tests for Personal Health Record Aggregator plugins

Plugin Test case Test

Result

Pass Fail

Configurator TC-01 Configurator plugin
implements Configurator
Interface.

Configurator plugin
can be used by the
aggregator.

Configurator plugin can
not be used by the
aggregator.

TC-02 Configurator returns
expected configuration: data
units.

Aggregator will return
expected data units.

Aggregator will not return
expected data units.

TC-03 Configurator returns
expected configuration: data
sources.

Aggregator will return
data from these data
sources.

Aggregator will not return
data from these data
sources.

PHR source TS-01 PHR source plugin
implements PhrSource
interface.

PHR source plugin
can be used by the
aggregator.

PHR source plugin can
not be used by the
aggregator.

TS-02 PHR source plugin gets data
from its data source.

Aggregator will return
data from the data
source.

Aggregator will not return
data from the data
source.

TS-03 PHR source plugin returns
data according to the data
units provided by
configuration.

Aggregator will not
have to process and
filter extraneous data
from the data source.

Aggregator will have to
process and filter
extraneous data from the
data source.

Merger

TM-01 Merger plugin implements
Merger interface.

Merger can be used
by the aggregator.

Merger can not be used
by the aggregator.

TM-02 Merger merges data
according to its specification.

Aggregator will return
correctly-merged
data.

Aggregator will not return
correctly-merged data.

Output

TO-01 Output plugin implements
Output interface.

Output can be used
by the aggregator.

Output can not be used
by the aggregator.

TO-02 Output plugin outputs data
according to its specification.

Aggregator output will
be as expected.

Aggregator output will not
be as expected.

5.1.2. Data and meta-data populated in private repository

Data and meta-data stored in private repository greatly depends on the implementation of different pluggable
modules of the aggregator, but the aggregator itself should be able to function only having a rudimentary
master patient index containing the GUIDs of patients to be retrieved and their mappings to the identifiers in
other PHR systems. No sensitive, private or personal data is stored in aggregators’ private repository.

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 21 of 49

5.1.3. Summary of testing results

Unit tests and functional tests provide proof that the overall architecture of the aggregator works as expected,
but there is still a significant part of code of concrete implementations of the plugins not covered by tests. This
technical debt is to be eliminated in parallel to the process of fine-tuning the aggregator in the production
environment.

5.2. Web Lifestyle Data Aggregator

5.2.1. Specific testing plan and results

The testing plan addresses each one of the aggregator components separately. Thus, Table 12, shows the
test scenarios and cases for the functional testing of (a) Query Detector, addressing its versions intended for
different browsers: Firefox browser, Chrome browser and (b) User Intention Extractor. Table 13, shows the
test scenarios and cases of non-functional testing of Web Lifestyle Data Aggregator components. The
aggregator was tested by 5 volunteers part of the project team. All participants filled in Participant Consent
Form (see Annex 1).

Table 12. Test scenarios and test cases of functional testing of Web Lifestyle Data Aggregator.

Test Scenario Test Case
Results and
Comments No Description No Description

Component: Query Detector for Firefox browser

T
S

_
F

_
L

_
0
1

Installation

TC-01
Download and install add-on (*.xpi) from a web
page

Pass

TC-02
Drag and drop add-on (*.xpi) as file to the area of
browser

Pass

TC-03 Install add-on from the Firefox marketplace Pass

T
S

_
F

_
L

_
0
2

Usage

TC-01 Search on Google webpage Pass

TC-02 Search on Google from Firefox search box Pass

TC-03 Search on Bing webpage Pass

TC-04 Search on Bing from Firefox search box Pass

TC-05 Search on Yahoo webpage Pass

TC-06 Search on Yahoo from Firefox search box Pass

Component: Query Detector for Chrome browser

T
S

_
F

_
L

_
0
3

Installation

TC-01
Download and install extension (*.crx) from a web
page

Pass (until
Chrome v32.x)

TC-02
Drag and drop extension (*.crx) as file to the area of
browser

Pass (until
Chrome v32.x)

TC-03 Load unpacked extension in developer mode Pass

TC-04 Install extension from the Chrome Web Store Pass

T
S

_
F

_
L
_
0

4

Usage
TC-01 Search on Google webpage Pass

TC-02 Search on Google from Chrome navigation bar Pass

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 22 of 49

TC-03 Search on Bing webpage Pass

TC-04 Search on Bing from Chrome navigation bar Pass

TC-05 Search on Yahoo webpage Pass

TC-06 Search on Yahoo from Chrome navigation bar Pass

Component: User Intention Extractor

T
S

_
F

_
L

_
0
5

Installation

TC-01 Windows: Install using the automatic setup Pass

TC-02 Windows: Install manually using the guidelines Pass

TC-03 Linux: Install manually using the guidelines Pass

TC-04 Mac: Install manually using the guidelines Pass

T
S

_
F

_
L

_
0
6

Set CARRE
Account

TC-01 Insert normal credential information Pass

TC-02 Cancel ‘Set Account’ dialog Pass

TC-03 Provide insufficient credential information Pass

TC-04 Save & Validate account Pass

TC-05 Prompt for new user registration Pass

T
S

_
F

_
L

_
0
7

Launch User
Intention

Extractor on
startup

TC-01
Register process to run on startup via windows
automatic setup

Pass

TC-02 Enable/Disable to run on startup via the system tray Fixed

T
S

_
F

_
L

_
0
8

Visualization of
Results

TC-01 Change dates and show the resulted intentions Pass

TC-02 Refresh the resulted user intentions Pass

TC-03 Drag and drop nodes from the shown graph Pass

TC-04 Change the shown top-n [1-3] classified intentions Pass

T
S

_
F

_
L

_
0
9

Browse
Database

TC-01 Navigate on database structure Pass

TC-02 Navigate on browse data Pass

TC-03 Browse the collected queries Pass

TC-04 Browse the classified intentions per query Pass

TC-05 Browse the available categories of intentions Pass

Table 13. Test scenarios and test cases of non-functional testing of Web Lifestyle Data Aggregator.

Test Scenario Test Case
Results and
Comments No Description No Description

Component: Query Detector for Firefox browser

T
S

_
N

_
L
_
0

1
 Integration TC-01 User Intention Extractor Pass

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 23 of 49

TC-02 Firefox History Observer Pass

T
S

_
N

_
L
_
0

2

Data validation

TC-01 Pass all the queries to User Intention Extractor Pass

TC-02 Integrity of transmitted data Pass

TC-03 Check for multi-records of the same query Fixed

TC-04 Check for unsupported characters in queries Pass

T
S

_
N

_
L
_
0

3

Security

TC-01 Network transmission leakages over Internet Pass

TC-02 Violation of Firefox Security Pass

Component: Query Detector for Chrome browser

T
S

_
N

_
L
_
0

4

Integration

TC-01 User Intention Extractor Pass

TC-02 Chrome History Listener Pass

T
S

_
N

_
L
_
0

5

Data validation

TC-01 Pass all the queries to User Intention Extractor Pass

TC-02 Integrity of transmitted data Pass

TC-03 Check for multi-records of the same query Fixed

TC-04 Check for unsupported characters in queries Pass

T
S

_
N

_
L
_
0

6

Security

TC-01 Network transmission leakages over Internet Pass

TC-02 Violation of Chrome Security Pass

Component: User Intention Extractor

T
S

_
N

_
L
_
0

7

CARRE Private
RDF – SPARQL

Endpoint

TC-01 Integrity of transmitted data Pass

TC-02 SPARQL query validation Pass

TC-03 Check the correctness of inserted data types Pass

TC-04 Overcome problems of connection lost Pass

T
S

_
N

_
L
_
0

8

Data validation

TC-01 Receive all queries from Query Detectors Pass

TC-02 Pass all queries to classification process Pass

TC-03
Store all detected intentions to the local database of
user

Pass

TC-04
Upload the all relevant intentions of user private
RDF

Pass

T
S

_
N

_

L
_
0
9

Security
TC-01 Network transmission leakages over Internet Fixed

TC-02 Safe storage of user credentials Pass

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 24 of 49

TC-03 Not upload the actual queries to private RDF Pass

TC-04
Not upload any data to other RDF repositories apart
from the user private RDF

Pass

TC-05
Only health and travelling intentions upload to
CARRE private RDF

Pass

5.2.2. Data and meta-data populated in private repository

Table 14, shows the web Lifestyle data that is collected by the Web Lifestyle Data Aggregator for 5 volunteers.
All participating volunteers created private accounts in CARRE system and installed the required components
(Query Detector for Firefox and Chrome, and User Intention Extractor) of aggregator in their personal
computers. The only thing that they had to do was to search on the Internet as they do every day. The numbers
that are shown in Table 14 represent the search queries (light blue) and the relevant intentions (light orange)
of users for a period of 1 month (20/03/2015 - 20/04/2015). In order to fill the Table 14, we added an additional
functionality in the User Intention Extractor, which is responsible to provide statistical information about the
collected data to the user. Note that the actual queries are only stored in a local database that is located in
user’s personal computer and only the intentions that are relevant to CARRE are uploaded in the private RDF
repository. The number of relevant intentions appears bigger than the number of relevant queries because we
classify every query in the top-3 intentions according the available categories. Whether we want to transform
the number of intentions to number of triples in RDF, we would only need to multiply the number of intentions
with 7 (number of triples per intention). Finally, the usernames of volunteers are anonymized for privacy
reasons.

Table 14. Web lifestyle related data and metadata populated in user local database and in private RDF.

Anonymized
Username

Search Engines
(# Queries)

Browsers
(# Queries) User Local Database Private RDF

Google Bing Yahoo Firefox Chrome
Total
Queries

Relevant
Queries

Relevant
Intentions

d********r 303 24 4 319 12 331 44 59

d****s 56 40 0 58 38 96 11 15

a****d 540 10 1 439 112 551 153 189

e*****o 24 4 7 15 20 35 2 3

n****o 729 0 0 10 719 729 36 42

5.2.3. Summary of testing results

From the 68 test scenarios and cases considered (Table 12 and Table 13) 62 passed successfully. From the
6 test cases with issues, the 2 tests (TS_F_L_03.TC-01 and TS_F_L_03.TC-02) conditionally passed and the
4 tests (TS_N_L_02.TC-03, TS_N_L_05.TC-03, TS_F_L_07.TC-02 and TS_N_L_09.TC-01) fixed. Table 15
summarizes the test cases that revealed issues and bugs of the component and the corrective measures
taken.

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 25 of 49

Table 15. Discussion and solutions about the test cases with issues.

Query Detector for Firefox browser

TS_N_L_02.TC-03 Details: We check if the Query Detector detects a search query more than one time.
This depends on how the webpage of search engine works.

Results: We determine that when a user clicks the next pages of results the Query
Detector detects again the same query. We fixed this issue and we release a new
version (v0.4) of add-on.

Query Detector for Chrome browser

TS_F_L_03.TC-01 Details: We test if it possible to install someone the Chrome extension of Query
Detector that is available to the CARRE webpage. Therefore, the tester downloads
the CRX file and installs it to Chrome with a simple click on the file.

Results: We do not find any problem with the following procedure until the Chrome
v32.x, after this version there are some security restrictions of Chrome browser that
allow installing an extension only from the Chrome Web Store.

TS_F_L_03.TC-02 Details: We test if it possible to install someone the Chrome extension of Query
Detector with a simple drag and drop of the CRX file to the Chrome window.

Results: We do not find any problem with the following procedure until the Chrome
v32.x, after this version there are some security restrictions of Chrome browser that
allow installing an extension only from the Chrome Web Store.

TS_N_L_05.TC-03 Details: We check if the Query Detector detects a search query more than one time.
This depends on how the webpage of search engine works.

Results: We determine that when a user clicks the next pages of results the Query
Detector detects again the same query. We fixed this issue and we release a new
version (v0.3) of extension.

User Intention Extractor

TS_F_L_07.TC-02 Details: In the menu of User Intention Extractor, the user is possible to select if he/she
wants to enable or disable the running of this component on the startup of the
operating system.

Results: This feature was not fully functional and by default the User Intention
Extractor has defined to run on the startup. We fixed this issue and we release a new
version (v1.3) of the application.

TS_N_L_09.TC-01 Details: We perform a series of networking tests (using as packet analyzer the
Wireshark13) in order to see what data is transmitted in plaintext form or not and in
which direction.

Results: The results of this procedure show that the communication channel between
the User Intention Extractor and the authenticated SPARQL endpoint was unsecured
(HTTP) by default. Thus, we fixed this issue by passing this channel via a secure
communication channel (HTTPS) that is provided by the Apache web server
(mod_proxy14).

13 https://www.wireshark.org/
14 http://httpd.apache.org/docs/current/mod/mod_proxy.html

https://www.wireshark.org/
http://httpd.apache.org/docs/current/mod/mod_proxy.html

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 26 of 49

6. Testing of Aggregators for Medical Scientific and Educational Data

6.1. Medical Evidence Data Aggregator

The medical evidence data aggregator aims to: 1) enrich the evidence of the existing risk descriptions; and 2)
identify new risk associations for cardiorenal diseases and comorbidities as published in medical literature
during and beyond the project’s lifetime. Medical experts can use key words to search, then based on the
automatically highlighted new evidences can suggest possible new risk associations, and analyse and confirm
the mined evidences and associations.

6.1.1. Specific testing plan and results

The test addresses functional and non-functional issues for the portal. Table 16 shows test scenarios and test
cases of Functional testing.

Table 16. Test scenarios and test cases of functional testing of Medical Evidence Data Aggregator.

Test Scenario Test Case Results and
Comments

No Description No Description

T
S

_
F

_
E

_
0

1

Data search from data
source (search interface
by keywords to get list)

TC-01 Pubmed data source Pass

TC-02 IEEE data source Pass

T
S

_
F

_

E
_
0

2
 Data fetch from data

source (fetch data from
id to get details)

TC-01 Pubmed data source Pass

TC-02 IEEE data source Pass

T
S

_
F

_
E

_
0

3

Interface for Data
search, fetch, list, refine,
paging

TC-01 Data pass to search engine and return
summary: user give a keyword and
show the list

Pass

TC-02 Data pass to search engine and fetch
abstract: user double click a citation
and fetch the abstract

Pass

TC-03 Order by: list interface interaction: the
order of list can be organized by
summary year and flag

Pass

TC-04 Filter from the exist list: only show items
that contains the given string

Pass

TC-05 Previous / next page: interface
interaction

Pass with default
20 records

T
S

_
F

_
E

_
0

4

Dictionary organization

TC-01 Load user specified dictionaries:
initialize selected dictionary for analysis

Pass with
CARRE,
ICD,HOTMAP,CL

TC-02 Drag/drop to manage
selected/unselected dictionary:
add/insert/delete dictionary from a list

Pass

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 27 of 49

T
S

_
F

_
E

_
0

5

Timing task-pick
up/collect citations

TC-01 Pick up a task at specified time every
day: pick up a list of key words of a
domain

Pass

TC-02 Read the task and collect 20 citations
for each keyword: document repository
growing regularly by the task

Pass

TC-03 Admin user could set task/processing
task: task be loaded to data repository
and task be processed

Pass

T
S

_
F

_
E

_
0

6

Statistics

TC-01 Statistic new pairs: show all the
documents that contains new pairs

Pass with a small
set of Risk/Result

TC-02 It should only contain specified domain
not others

Pass

TC-03 Risk and result be picked out and their
relations

Pass

TC-04 Interface interaction: expand/collapse,
terms in right colour

Pass

T
S

_
F

_
E

_
0

7

Medical Evidence Data

TC-01 Citation showed in right format:
sectioned (introduction, method, results
and conclusion) or not (in whole
paragraph)

Pass, tested two
format citations

TC-02 Input analysis keywords: popup window
to allow user input a group of keywords

Pass

TC-03 Keyword tags create: user keywords
tags should be created after analysis
done

Pass

TC-04 Basic tags: number tags should be
created from configure file

Pass

TC-05 Project tags: project tags should be
created from configure file

Pass

TC-06 Relation table: output including a
relation table if there are some relations

Pass, need
improvement

TC-07 Tag interface: check/uncheck one
check box should fire an event if there
is.

Pass

TC-08 Check/uncheck all tags should fire
some events if there is.

Pass

TC-09 Keywords tags: if the citation contains
the keywords user defined, this/these
keyword(s) should be picked out by
high light colour.

Pass

TC-10 Risk tags: if a risk term was contained
in the citation, and this term was listed
in the ontology, this term should be
picked out by a high light colour.

Pass if it is
defined by
ontology

TC-11 Result tags: if a result term was
contained in the citation, and this term
was listed in the ontology, this term

Pass if it is
defined by
ontology

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 28 of 49

should be picked out by a high light
colour.

TC-12 Negative tags: if a negative term was
contained in the citation, and this term
was listed in the ontology, this term
should be picked out by a high light
colour.

Pass if it is
defined by
ontology

TC-13 Positive Strong tags: if risk and result
terms contained in one sentence and
they have been defined as
cause/caused by relation, this sentence
should be picked out by a high light
colour.

Pass, needs
improvement

TC-14 Positive Weak tags: if risk and result
terms contained in one sentence but
they have not been defined as
cause/caused by relation, this sentence
should be picked out by a high light
colour.

Pass

TC-15 Negative strong tags: if risk and result
terms contained in one sentence, they
have been defined as cause/caused by
relation, but this sentence contains
negative tags, this sentence should be
picked out by a high light colour.

Pass, needs
improvement

TC-16 New pair tags: if one result tag in a
sentence, the grammar structure of this
sentence is clear, the corresponding
triple should be picked out and listed in
the new pair section.

Pass, needs
improvement

TC-17 Unknown knowledge: if a sentence
contains some terms belong to risk and
result tags, but they do not have relation
defined, they will be listed in unknown
knowledge section.

Pass

T
S

_
F

_
E

_
0

8

Document access TC-01 findDocument - Return document by
given docId

Pass

TC-02 getAttachmentsByDocId - Return a list
including all the attachments that
included by this doc

Pass

TC-03 getDBUri - Return URI of this document
repository

Pass

TC-04 removeDocument - Remove given
document

Pass

TC-05 SaveDocument - Create or update a
document by given model

Pass

TC-06 View - Return document list by given
view Id

Pass

T
S

_
F

_

E
_

0
9

 PaperDocAccess TC-01 addAttachmentForPaper - add a
Attachment

Pass

file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/DocumentAccess.html%23getAttachmentsByDocId-java.lang.String-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/DocumentAccess.html%23getDBUri--
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/DocumentAccess.html%23removeDocument-java.lang.Object-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23addAttachmentForPaper-java.lang.String-byte:A-java.lang.String-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23addAttachmentForPaper-java.lang.String-byte:A-java.lang.String-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23addAttachmentForPaper-java.lang.String-byte:A-java.lang.String-

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 29 of 49

TC-02 addHtmlAttachmentForPaper - add a
Html Attachment

Pass

TC-03 addXmlAttachmentForPaper - add a
Xml Attachment

Pass

TC-04 GetDocAttachemtConten -
getDocAttachemt by id and name

Pass

TC-05 getPaperDocumentByDocId - get
Paper Document By DocId

Pass

TC-06 getPaperDocumentByResIdAndResTy
pe - get Paper Document By ResId And
ResType

Pass

TC-07 getPaperIdsByAuthor - get Paper Ids
By Author

Pass

TC-08 getPaperIdsByEndYear - get Paper Ids
By End Year

Pass

TC-09 getPaperIdsByPubTitle - get Paper Ids
By PubTitle

Pass

TC-10 getPaperIdsByYear - get PaperIds By
Year

Pass

TC-11 getPaperIdsByYearAndAuthor - get
PaperIds By Year And Author

Pass

TC-12 getPaperIdsByYearAndPubTitle - get
PaperIds By Year And PubTitle

Pass

TC-13 getPaperIdsByYearAndTerm - get
Paper Ids By Year And Term

Pass

TC-14 getPaperIdsByYearRange - get Paper
Ids By Year Range

Pass

TC-15 getPaperTermsByDocId - get Paper
Terms By DocId

Pass

Table 17 shows test scenarios and test cases of Non-Functional testing.

Table 17. Test scenarios and test cases of non-functional testing of Medical Evidence Data Aggregator

Test Scenario Test Case Results and
Comments No Description No Description

T
S

_
N

_
E

_
0

1

System initialize

TC-01 Gate initialize: Gate home found,
plugins loaded

Pass

TC-02 System configure load: System
properties load

Pass

TC-03 System resource load: Jape files Pass

TC-04 Ontology files Pass

TC-05 Domain keywords Pass

TC-06 RDF repository connect: Get response
from repository

Pass

file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23addHtmlAttachmentForPaper-java.lang.String-byte:A-java.lang.String-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23addHtmlAttachmentForPaper-java.lang.String-byte:A-java.lang.String-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23addHtmlAttachmentForPaper-java.lang.String-byte:A-java.lang.String-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23addXmlAttachmentForPaper-java.lang.String-byte:A-java.lang.String-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23addXmlAttachmentForPaper-java.lang.String-byte:A-java.lang.String-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23addXmlAttachmentForPaper-java.lang.String-byte:A-java.lang.String-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getDocAttachemtContent-java.lang.String-org.ccgv.text.joint.DocAccessConstants.EnumAttachment-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperDocumentByDocId-java.lang.String-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperDocumentByDocId-java.lang.String-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperDocumentByDocId-java.lang.String-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperDocumentByResIdAndResType-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperDocumentByResIdAndResType-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperDocumentByResIdAndResType-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperDocumentByResIdAndResType-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByAuthor-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByAuthor-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByAuthor-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByEndYear-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByEndYear-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByEndYear-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByPubTitle-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByPubTitle-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByPubTitle-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByYear-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByYear-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByYear-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByYearAndAuthor-java.lang.String-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByYearAndAuthor-java.lang.String-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByYearAndAuthor-java.lang.String-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByYearAndPubTitle-java.lang.String-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByYearAndPubTitle-java.lang.String-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByYearAndPubTitle-java.lang.String-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByYearAndTerm-java.lang.String-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByYearAndTerm-java.lang.String-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByYearAndTerm-java.lang.String-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByYearRange-java.lang.String-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByYearRange-java.lang.String-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperIdsByYearRange-java.lang.String-java.lang.String-org.ccgv.text.joint.DocAccessConstants.ResTypeEnum-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperTermsByDocId-java.lang.String-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperTermsByDocId-java.lang.String-
file:///D:/work/doc/toPartner/17march/doc/org/ccgv/text/joint/PaperDocAccess.html%23getPaperTermsByDocId-java.lang.String-

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 30 of 49

T
S

_
N

_
E

_

0
2

Timing task

TC-01 Pickup task start-up: Load admin user
uploaded domain keywords

Pass with a
configured time

TC-02 Process task start-up: Collect
document

Pass

T
S

_
N

_
E

_
0

3

Citation processing init

TC-01 clearNLP init properly - Decoder get
instance

Pass

TC-02 Pattern files load - Sentence pattern
resource load

Pass

T
S

_
N

_

E
_
0

4

Key words rule

TC-01 Rule create - Temp rule created Pass

T
S

_
N

_
E

_
0

5

Building processing
pipeline, user defined
dictionaries and user
defined keywords

TC-01 Build basic pipelines - No exception Pass

TC-2 Build ontology for each dictionary Pass with
CARRE,
ICD,HOTMAP,CL

TC-3 Build JAPE transducer for keywords Pass with fixed
format

T
S

_
N

_
E

_
0
6

Analysis semantic role TC-1 Pick out sentences containing feature:
analysis verb action for these
sentences

Pass with blank
feature

6.1.2. Data and meta-data populated in public repository

The RDF repository was designed to store the medical evidence data, described in deliverable D4.1 “Semantic
repository design & implementation”. The original data were gathered as a result of the manual search for
relevant medical evidence data as defined in deliverable D2.2 “Functional Requirements & CARRE Information
Model”. The results of task T3.4 “Aggregators for medical evidence” provide ways for automatic search and
suggest for possible new risk associations, which need further validation from the medical professionals. Once
the new risk associations have been validated, CARRE experts are switching back to the Semantic Data Entry
System in order to insert the data.

6.1.3. Summary of testing results

We have created 9 function scenarios of 56 test cases with 46 clean pass and 6 non functional scenarios of
15 test cases based on current progress. Table 18 summarizes the test cases with issues which are not clean
pass or under condition.

Table 18. Discussion and solutions about the test cases with issues.

TS_F_E_03.TC-05 Issue: total number of displayed items can be changed

TS_F_E_04.TC-01 Issue: currently only limited ontology had been tested, such as ICD, CL, CARRE,
other tests can be conducted if needed.

TS_F_E_06.TC-01 Issue: need to test on performance when dataset grow larger.

Need to test with Risk/Result ontology from OU.

TS_F_E_07.TC-01 Issue: we found two formats in PubMed, there are maybe more.

TS_F_E_07.TC-06 Issue: words relation in simple sentence structures were tested.

TS_F_E_07.TC-10 to
TC-13

Issue: if format is not standard, the accuracy will generally decrease. Ontology
should improve the accuracy, for example use synonyms.

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 31 of 49

TS_F_E_07.TC-15 to
16

Issue: could improve it by checking close relation and use ontology defined by
OU.

TS_N_E_02.TC-1 Issue: time zone could change when needed. .Have not tested cases when server
was migrated to other time zone server.

TS_N_E_05.TC-2 Issue: if need more we have to test it first, especially when the dictionary is too
big.

TS_N_E_05.TC-03 If format needs to be changed, code needs to be modified as well. Currently
sample format is used.

TS_N_E_06.TC-01 Issue: needs to find featured sentence by using latest CARRE ontology, and then
to analysis sentence structures.

New release of developed software (open source) source code can be found here:

http://www.carre-project.eu/innovation/medical-evidence-aggregator/

6.2. Educational Resource Aggregator

In this section, we will describe the testing methods and results for the Educational Resource Aggregator.

The testing is done per module basis and will be further divided in Functional and non-Functional. Furthermore,
we will briefly describe a group of software automated unit testing that is integrated on the development
process of each component and provides data integrity and validation checks during development stages.
Finally, in the end of this section we will report a summary of what we encountered and fixed during the
integration and testing process.

In order for the reader to follow along the above statements, a brief description is provided from deliverable
T3.4.

The aim of the educational resource aggregator is to harvest educational resources from 3rd party repositories,
present these to the medical expert for annotation and rating, and output the results of the annotation (together
with resource metadata) to the CARRE public RDF repository.

The main parts of this aggregator are: the Resource Retriever, the Resource Rating, the Resource
Metadata Processing, and the User Application.

 The Resource Retriever accepts CARRE concept terms from the CARRE public RDF repository and
uses them to formulate queries to external 3rd party educational resource repositories. The results of
this search are parsed to extract metadata. Then the retrieved results and metadata are displayed to
the expert user for rating and annotation (via the aggregator front end). The module consists of 2
services that make use of SPARQL protocol in the case of query term extraction from the CARRE
server and API requests to each educational repository.

 The Resource Rating module allows the input of expert user opinion and annotation, and also
calculates subjective scores that measure the quality of the resource. Expert rating involves
assessment of content-keyword relevance, content accuracy and depth of coverage, while the
automatic systems rating is based on the Readability Test of the Flesch-Kincaid algorithm, and rating
based on the latest modified version of the article and number of revisions.

 The Resource Metadata Processing module involves metadata enrichment via semantic web
sources (such as NCBO BioPortal medical ontologies and DBpedia). The module is a combination of
3 services that collect data per article, making multiple SPARQL requests to enrich the data and finally
store it as a unique identified resource into the local MongoDB datastore. Then data is transformed
into RDF triples in order to be inserted to CARRE educational repository.

 The User Application is a web application based on HTML5 technology with responsive views for
almost every device available, mobile phones , tablet , desktop pc’s and embedded industrial pc’s.
The user applications integrates the above modules and enables user interaction with the data
components

http://www.carre-project.eu/innovation/medical-evidence-aggregator/

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 32 of 49

6.2.1. Specific testing plan and results

The testing plan as explained in introduction is organized by modules according to the Architecture of the
Educational Resources Aggregator described in T3.4. The numbering of the test scenarios follows the
“TS_F_ED_” naming convention. In detail, both the functional testing and non-functional is further divided in
two modules, backend interface and frontend user interface testing.

The functional testing is analytically described in Table 19 and involves scenarios about functionality review
and design validation regarding each component of the Educational Resource Aggregator.

The non-functional testing is shown in Table 20 and addresses issues about integration testing, data validation,
scalability testing, browser and compatibility testing, security testing and performance testing. Moreover, we
will not investigate scenarios about API testing, because the aggregator does not expose any API thus no
testing is available. In the last subsection, we will describe in detail all these test cases that have issues and
how we resolved them.

In the last section a brief description takes place about automated testing during development and some
screenshots of Travis CI15 and other tools used to enhance the development cycle.

Table 19. Test scenarios and test cases of functional testing of Educational Resource Aggregator.

Test Scenario Test Case
Results and
Comments No Description No Description

Module : Backend interface of Educational Resource Aggregator

T
S

_
F

_
E

D
_

0
1

Fetch CARRE
risk elements

TC01
Establish backend connection with public RDF
repository by educationalAggregator user

Pass

TC02
Fetch all CARRE risk elements from public RDF
repository

Pass

TC03
Temporarily store to Local Storage for better
performance

Not
implemented
as of V0.4.416

T
S

_
F

_
E

D
_

0
2

Query
Generator

TC01
Formulate queries for the unstructured web
repositories

Pass

TC02 Query to Wikipedia in JSON format Pass

TC03 Query to MedlinePLUS in XML format Pass

TC04
Parse results from Wikipedia and MedlinePLUS and
unify data into JS objects

Pass

T
S

_

F
_
E

D
_
0

3

TC01 Retrieve JSON list from Wikipedia Pass

15 Travis CI is an open-source hosted, distributed continuous integration service used to build and test projects hosted at
GitHub, https://travis-ci.org/

16 the temporary storage functionality had been used in early versions for testing – no longer applicable

https://travis-ci.org/

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 33 of 49

Educational
Object

Harvester

TC02 Retrieve resource from MedlinePlus Pass

TC03
Filter out resources unrelated to Health or CARRE
model

Pass

T
S

_
F

_
E

D
_

0
4

Educational
Object

Metadata
Extractor

TC01 Extract Wikipedia resource snippet and source URL Pass

TC02 Extract MedlinePLUS snippet and source URL Pass

TC03 Semantic Analysis of fetched Resource
Not yet as of
V0.4.4

T
S

_
F

_
E

D
_

0
5

Metadata
Enrichment

and Mapping
CARRE
schema

TC01
Medical identifiers fetched for each resource visited by
user

Not
implemented
as of V0.4.4

TC02 Resource linked to CARRE risk elements Fixed

T
S

_
F

_
E

D
_

0
6

Educational
Metadata
Sender

TC01 RDF insert queries per resource Pass

T
S

_
F

_
E

D
_

0
7

Educational
Object Rating

TC01
Retrieve ratings for all user rated resources that exist
in current search results

Pass

TC02

RDF insert
rating score
per resource
per user

Pass

Module: Frontend user interface of Educational Resource Aggregator

T
S

_
F

_
E

D
_

0
8

Login/Logout
and Register

through
CARRE
devices

TC01 Login/Logout redirection through https Fixed

TC02 Register through https Fixed

T
S

_
F

_
E

D
_

0
9

Search for
educational
resources

TC01
Autocomplete risk elements through CARRE RDF
repository

Pass

TC02 Allow query without risk element Pass

TC03 Display current average rating of each resource Pass

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 34 of 49

TC04
Pagination when results are more than 20 on top and
bottom of page

Pass

TC05 Wikipedia/MedlinePLUS source select box Pass

TC06 Top search box functionality Pass

TC07 Default search engine set as Wikipedia Pass

T
S

_
F

_
E

D
_

1
0

Navigate to
educational

resource

TC01 Click on resource navigates to Resource Details Pass

TC02 Back button returns you to previous resource list Pass

TC03
Resource showing in Iframe compatibility with source
website

Fixed

T
S

_
F

_
L

_
1
1

User Rating

TC01 Rating visible only for logged in users Pass

TC02 Special Rating for each user role
Not
implemented
as of V0.4.4

TC03
Rating average score gets updated live after each user
rating

Fixed in V0.2.3

Table 20. Test scenarios and test cases of non-functional testing of Educational Resource Aggregator.

Test Scenario Test Case
Results and
Comments No Description No Description

Module : Backend interface of Educational Resource Aggregator

T
S

_
N

_
E

D
_
0
1

Security

TC01
Get token for write access to public RDF through ENV
variables

Pass

TC02
Only logged in users allowed to modify/add ratings in
RDF repository

Pass

TC03 Transmit data through encrypted protocol (https) Fixed

T
S

_
N

_
E

D
_
0
2

Data security
testing

TC01 Duplicate educational resource are not allowed Pass

TC02 Users cannot add duplicate ratings on each resource Pass

TC03 Users can edit only their own rated resources Pass

TC04
User authentication saved temporarily in encrypted
browser session

Fixed

T
S

_
N

_
E

D

_
0
3

Performance
Testing

TC01 Retrieve resources from Wikipedia Pass (200ms)

TC02 Retrieve resources from MedlinePlus Pass (450ms)

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 35 of 49

TC03 Average query to RDF repository (Virtuoso) Pass (250ms)

TC01 Process resource metadata after retrieval Pass (170ms)

TC02 Upload resource metadata to RDF repository Pass(220ms)

TC03 Upload resource rating metadata to RDF Pass(280ms)

Module : Frontend user interface of Educational Resource Aggregator

T
S

_
N

_
E

D
_

0

4

Data type
validation

testing

TC01 Search query is validated against special characters Pass

TC02 Queries passed to online sources are URL encoded Pass

T
S

_
N

_
E

D
_
0
5

Browser
Compatibility

TC01 Chrome after >=30 Pass

TC02 Firefox after >=12 Pass

TC03 Opera after >=7 Pass

TC04 Internet Explorer >=10 Pass

TC05 Safari >=4.0 Pass

TC06 Android >=4.0 Pass

TC07 IOS >=5.0 Pass

T
S

_
N

_
E

D
_
0
6

Scalability
Testing

TC01 Local Database scalability Fixed

Scalability Testing

The previous implementation fails on scalability needs because of MongoDB data store unit, which is not
scalable by design.The current implementation as of V0.4.4 removes the dependency of the above unit thus
the only storage engine used is Virtuoso RDF repository. As a result the Educational Aggregator follows the
12-factor app principle.

The Twelve-Factor App is a methodology for building software-as-a-service apps that:

 Use declarative formats for setup automation, to minimize time and cost for new developers joining
the project;

 Have a clean contract with the underlying operating system, offering maximum portability between
execution environments;

 Are suitable for deployment on modern cloud platforms, obviating the need for servers and systems
administration;

 Minimize divergence between development and production, enabling continuous deployment for
maximum agility;

 Can scale up without significant changes to tooling, architecture, or development practices.

The Twelve-Factor methodology can be applied to applications written in any programming language, and
which use any combination of backing services (database, queue, memory cache, etc).

In order to prove the previous statement, we provide a set of benchmarking tests using Apache Bench:

1. Results of 200 simultaneous users calling 1 instance of the aggregator on a set of 2000 requests

Server Software: nginx/1.4.6

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 36 of 49

Server Hostname: edu.carre-project.eu

Server Port: 80

Document Path: /

Document Length: 1568 bytes

Concurrency Level: 200

Time taken for tests: 6.442 seconds

Complete requests: 2000

Failed requests: 0

Total transferred: 4079176 bytes

HTML transferred: 3136000 bytes

Requests per second: 310.47 [#/sec] (mean)

Time per request: 644.176 [ms] (mean)

Time per request: 3.221 [ms] (mean, across all concurrent requests)

Transfer rate: 618.40 [Kbytes/sec] received

2. Results of 400 simultaneous users calling 3 instances of the aggregator on a set of 2000 requests

Server Software: nginx/1.4.6

Server Hostname: edu.carre-project.eu

Server Port: 80

Document Path: /

Document Length: 1568 bytes

Concurrency Level: 400

Time taken for tests: 4.354 seconds

Complete requests: 2000

Failed requests: 0

Total transferred: 4079176 bytes

HTML transferred: 3136000 bytes

Requests per second: 459.35 [#/sec] (mean)

Time per request: 355.756 [ms] (mean)

Time per request: 2.177 [ms] (mean, across all concurrent requests)

Transfer rate: 756.39 [Kbytes/sec] received

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 37 of 49

Browser Compatibility

Below we present sample screenshots of the browser compatibility testing for mobile, tablet and desktop views.

Figure 1. A screenshot of CARRE Educational Resources aggregator on Google Nexus 6

Figure 2. A screenshot of CARRE Educational Resources aggregator on iPad 4th gen

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 38 of 49

Figure 3. A screenshot of CARRE Educational Resources aggregator on Mac OS X – Chrome browser

6.2.2. Data and meta-data populated in public repository

In the current subsection, we describe queries and corresponding results for data populated in RDF repository.
The queries have been requested to http://carre.kmi.open.ac.uk:8890/sparql (Public RDF Endpoint) in the
default graph http://carre.kmi.open.ac.uk/public :

Table 21. SPARQL query to count all educational material per risk element

PREFIX edu: <http://carre.kmi.open.ac.uk/ontology/educational.owl#>

PREFIX risk: <http://carre.kmi.open.ac.uk/ontology/risk.owl#>

select distinct ?Risk_Element count(?title) AS ?Educational_Material WHERE {

?Risk_Element risk:has_educational_material ?p.

?p edu:title ?title.

}

GROUP BY ?Risk_Element

ORDER BY ?Educational_Material

Table 22. The SPARQL query results – the number of educational material per risk element

Risk Element
Educational

Material

CKD stage (http://carre.kmi.open.ac.uk/elements/ckd_3b) 1

CKD stage 4 (http://carre.kmi.open.ac.uk/elements/ckd_stage4) 3

CKD progression (http://carre.kmi.open.ac.uk/elements/progression_of_ckd) 5

Smoking (http://carre.kmi.open.ac.uk/elements/smoking) 5

CKD stage 5 (http://carre.kmi.open.ac.uk/elements/ckd_stage_5) 8

CKD stage 3 (http://carre.kmi.open.ac.uk/elements/ckd_3a) 9

http://carre.kmi.open.ac.uk:8890/sparql
http://carre.kmi.open.ac.uk/public
http://carre.kmi.open.ac.uk/elements/ckd_3b
http://carre.kmi.open.ac.uk/elements/ckd_stage4
http://carre.kmi.open.ac.uk/elements/progression_of_ckd
http://carre.kmi.open.ac.uk/elements/smoking
http://carre.kmi.open.ac.uk/elements/ckd_stage_5
http://carre.kmi.open.ac.uk/elements/ckd_3a

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 39 of 49

Acute kidney injury (http://carre.kmi.open.ac.uk/elements/acute_kidney_injury) 12

Atrial fibrillation (http://carre.kmi.open.ac.uk/elements/atrial_fibrillation) 12

Obesity (http://carre.kmi.open.ac.uk/elements/obesity) 14

Central obesity (http://carre.kmi.open.ac.uk/elements/central_obesity) 19

Dyslipidaemia (http://carre.kmi.open.ac.uk/elements/dyslipidemia) 19

Age (http://carre.kmi.open.ac.uk/elements/age) 19

Death (http://carre.kmi.open.ac.uk/elements/death) 20

Left ventricular hypertrophy
(http://carre.kmi.open.ac.uk/elements/left_ventricular_hypertrophy)

21

Hypoglycaemia (http://carre.kmi.open.ac.uk/elements/hypoglycaemia) 21

Diabetes (http://carre.kmi.open.ac.uk/elements/diabetes) 22

Acute myocardial infarction
(http://carre.kmi.open.ac.uk/elements/acute_myocardial_infarction)

27

Ischemic stroke (http://carre.kmi.open.ac.uk/elements/ischemic_stroke) 28

Depression (http://carre.kmi.open.ac.uk/elements/depression) 30

Cardiovascular disease
(http://carre.kmi.open.ac.uk/elements/cardiovascular_disease)

32

Heart failure (http://carre.kmi.open.ac.uk/elements/heart_failure) 33

Ischemic heart disease
(http://carre.kmi.open.ac.uk/elements/ischemic_heart_disease)

34

Hypertension (http://carre.kmi.open.ac.uk/elements/hypertension) 34

Chronic kidney disease
(http://carre.kmi.open.ac.uk/elements/chronic_kidney_disease)

34

Anemia (http://carre.kmi.open.ac.uk/elements/anemia) 53

Table 23. SPARQL query to count all educational material for each web source

PREFIX edu: <http://carre.kmi.open.ac.uk/ontology/educational.owl#>

select ?Source count(?p) AS ?Educational_Material WHERE {

?p edu:websource ?Source.

}

GROUP BY ?Source

Table 24. The SPARQL query results – the number of educational material for each web source

Source Educational_Material

Wikipedia 312

Medlineplus 127

http://carre.kmi.open.ac.uk/elements/acute_kidney_injury
http://carre.kmi.open.ac.uk/elements/atrial_fibrillation
http://carre.kmi.open.ac.uk/elements/obesity
http://carre.kmi.open.ac.uk/elements/central_obesity
http://carre.kmi.open.ac.uk/elements/dyslipidemia
http://carre.kmi.open.ac.uk/elements/age
http://carre.kmi.open.ac.uk/elements/death
http://carre.kmi.open.ac.uk/elements/left_ventricular_hypertrophy
http://carre.kmi.open.ac.uk/elements/hypoglycaemia
http://carre.kmi.open.ac.uk/elements/diabetes
http://carre.kmi.open.ac.uk/elements/acute_myocardial_infarction
http://carre.kmi.open.ac.uk/elements/ischemic_stroke
http://carre.kmi.open.ac.uk/elements/depression
http://carre.kmi.open.ac.uk/elements/cardiovascular_disease
http://carre.kmi.open.ac.uk/elements/heart_failure
http://carre.kmi.open.ac.uk/elements/ischemic_heart_disease
http://carre.kmi.open.ac.uk/elements/hypertension
http://carre.kmi.open.ac.uk/elements/chronic_kidney_disease
http://carre.kmi.open.ac.uk/elements/anemia

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 40 of 49

Table 25. The SPARQL query to count all predicates from the educational resource ontology

SELECT ?Predicates count(*) as ?Count

WHERE {

 ?s ?Predicates ?o .

 FILTER regex(str(?Predicates), "^http://carre.kmi.open.ac.uk/ontology/educational.owl")

}

group by ?Predicates

order by DESC(?Count)

Table 26. The SPARQL query results – the number of properties of the MERA ontology17

Properties of MERA Count

http://carre.kmi.open.ac.uk/ontology/educational.owl#total 994

http://carre.kmi.open.ac.uk/ontology/educational.owl#for_article 963

http://carre.kmi.open.ac.uk/ontology/educational.owl#date 963

http://carre.kmi.open.ac.uk/ontology/educational.owl#query 820

http://carre.kmi.open.ac.uk/ontology/educational.owl#position 820

http://carre.kmi.open.ac.uk/ontology/educational.owl#url 439

http://carre.kmi.open.ac.uk/ontology/educational.owl#title 439

http://carre.kmi.open.ac.uk/ontology/educational.owl#views 439

http://carre.kmi.open.ac.uk/ontology/educational.owl#date_accepted 439

http://carre.kmi.open.ac.uk/ontology/educational.owl#language 439

http://carre.kmi.open.ac.uk/ontology/educational.owl#websource 439

http://carre.kmi.open.ac.uk/ontology/educational.owl#snippet 438

http://carre.kmi.open.ac.uk/ontology/educational.owl#wordcount 308

http://carre.kmi.open.ac.uk/ontology/educational.owl#depth_of_coverage 143

http://carre.kmi.open.ac.uk/ontology/educational.owl#comprehensiveness 143

http://carre.kmi.open.ac.uk/ontology/educational.owl#relevancy 143

http://carre.kmi.open.ac.uk/ontology/educational.owl#accuracy 143

http://carre.kmi.open.ac.uk/ontology/educational.owl#educational_level 143

http://carre.kmi.open.ac.uk/ontology/educational.owl#validity 143

http://carre.kmi.open.ac.uk/ontology/educational.owl#rated_by_user 143

http://carre.kmi.open.ac.uk/ontology/educational.owl#categories 127

http://carre.kmi.open.ac.uk/ontology/educational.owl#source 127

http://carre.kmi.open.ac.uk/ontology/educational.owl#alternative_title 110

17 Medical Educational Resources Aggregator ontology (http://bioportal.bioontology.org/ontologies/MERA) developed in
CARRE and described in D.4.2.

http://carre.kmi.open.ac.uk/ontology/educational.owl#total
http://carre.kmi.open.ac.uk/ontology/educational.owl#for_article
http://carre.kmi.open.ac.uk/ontology/educational.owl#date
http://carre.kmi.open.ac.uk/ontology/educational.owl#query
http://carre.kmi.open.ac.uk/ontology/educational.owl#position
http://carre.kmi.open.ac.uk/ontology/educational.owl#url
http://carre.kmi.open.ac.uk/ontology/educational.owl#title
http://carre.kmi.open.ac.uk/ontology/educational.owl#views
http://carre.kmi.open.ac.uk/ontology/educational.owl#date_accepted
http://carre.kmi.open.ac.uk/ontology/educational.owl#language
http://carre.kmi.open.ac.uk/ontology/educational.owl#websource
http://carre.kmi.open.ac.uk/ontology/educational.owl#snippet
http://carre.kmi.open.ac.uk/ontology/educational.owl#wordcount
http://carre.kmi.open.ac.uk/ontology/educational.owl#depth_of_coverage
http://carre.kmi.open.ac.uk/ontology/educational.owl#comprehensiveness
http://carre.kmi.open.ac.uk/ontology/educational.owl#relevancy
http://carre.kmi.open.ac.uk/ontology/educational.owl#accuracy
http://carre.kmi.open.ac.uk/ontology/educational.owl#educational_level
http://carre.kmi.open.ac.uk/ontology/educational.owl#validity
http://carre.kmi.open.ac.uk/ontology/educational.owl#rated_by_user
http://carre.kmi.open.ac.uk/ontology/educational.owl#categories
http://carre.kmi.open.ac.uk/ontology/educational.owl#source
http://carre.kmi.open.ac.uk/ontology/educational.owl#alternative_title
http://bioportal.bioontology.org/ontologies/MERA

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 41 of 49

Table 27. The SPARQL query to count all educational material linking to CARRE risk elements

PREFIX edu: <http://carre.kmi.open.ac.uk/ontology/educational.owl#>

SELECT ?Predicates count(*) as ?Count

WHERE {

 ?s ?Predicates ?o .

 ?o a edu:object

 FILTER regex(str(?Predicates), "^http://carre.kmi.open.ac.uk/ontology/risk.owl")

}

group by ?Predicates

order by DESC(?Count)

Table 28. The SPARQL query results: number of educational material linking to CARRE risk
elements

Properties of risk ontology Count

http://carre.kmi.open.ac.uk/ontology/risk.owl#has_educational_material 515

Table 29. The SPARQL query to count all triples inserted by Educational Resource Aggregator

SELECT count(?s) as ?All_Educational_Triples

WHERE {

 ?s ?p ?o .

 FILTER regex(str(?s), "^http://carre.kmi.open.ac.uk/public/educational")

}

Table 30. The SPARQL query results: number of triples inserted by Educational Resource
Aggregator

All Educational Triples

10707

6.2.3. Automated software testing and code optimizations

We have built an automated tests using Jasmine test framework and run them with each new version of the
Aggregator. For the test runner we use Travis CI, which is a cloud service. Travis CI is an open-source hosted,
distributed continuous integration service used to build and test projects hosted at GitHub. Below we show two
screenshots regarding the testing jobs and actual tests that are implemented.

http://carre.kmi.open.ac.uk/ontology/risk.owl#has_educational_material

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 42 of 49

Figure 4. Screenshot of the testing job

 Figure 5. Screenshot of the implemented tests

Along with the automated software testing we also conducted some diagnostic experiments using
webpagetest.org, an online web page diagnostic service. Then we tried to fix some of the bugs related to

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 43 of 49

static content caching that were affecting the user experience of the application. Below we show two
diagnostic results – before and after the optimization.

Figure 6. Diagnostic results before optimization

Figure 7. Diagnostic results after optimization

6.2.4. Summary of testing results

In relation to the test scenarios and cases that were described in Table 19 and Table 20, we present only the
fixed cases along with some details of each scenario in the next table. The following test cases involve only
the functional and non-functional testing of the Educational Resource Aggregator.

Table 31. Discussion and solutions about the test cases with issues.

TS_F_ED_05.TC02 Details: Metadata Enrichment and Mapping CARRE schema

Results: Resources linked to CARRE risk elements Fixed.

TS_F_ED_08.TC01 Details: Login/Logout and Register through CARRE devices through https

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 44 of 49

TS_F_ED_08.TC02 Results: Fixed by using online CDN and SSL services for secure proxy

TS_F_ED_10.TC03 Details: Navigate to educational resource

Results: Resource showing in Iframe compatibility with source website Fixed

TS_N_ED_01.TC03 Details: Security

Results: Transmit data through encrypted protocol (https). A new SSL certificate
generated Fixed

TS_N_ED_02.TC04 Details: Data security testing

Results: User authentication saved temporarily in encrypted browser session Fixed

TS_N_ED_06.TC01 Details: Scalability Testing

Results: Fixed by removing local data store unit dependency

7. Testing of RESTful API

7.1. Specific testing methodology and tools

The RESTful API component exposes a number of CARRE-related services that allow accessing RDF data,
both public and private. A complete presentation of the RESTful API component can be found in D.4.1. This
section reports on the performance testing of the RESTful API.

Currently, the RESTFul API implements a number of methods that expose private and public RDF data. The
output of these methods are producing responses in JSON format, which allow developers within CARRE, as
well as third-party interested stakeholders, to build web services and applications on top of them. A crucial
parameter in the success of this component is its robustness and high performance.

A performance aspect that was taken into account during the development of the component concerns the
access of RDF data that reside in remote repositories. To achieve this, our component implements federated
queries18. In order to overcome high response times from these external data sources, CARRE’s RESTFul
component implements a caching mechanism that allows the fast execution of such methods.

For the assessment of the component’s performance, we have used Apache JMeter19, which is a Java
application designed to load test functional behaviour and measure performance. More specifically, the
settings of this testing are the following:

 10 threads, corresponding an equivalent number of users/applications are deployed every 5 seconds.
This simulates the maximum load expected for our repository.

 Each one of the methods is tested randomly. A testing cycle is complete once all methods have been
accessed.

 In total, 50 cycles are executed continuously. In total, the methods are accessed 500 times.

Figure 8 shows a screenshot of the settings discussed above.

18 http://www.w3.org/TR/sparql11-federated-query/
19 http://jmeter.apache.org/

http://www.w3.org/TR/sparql11-federated-query/
http://jmeter.apache.org/

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 45 of 49

Figure 8. A screenshot of Apache JMeter configuration.

 D.7.2. Aggregator testing and integration

FP7-ICT-61140 page 46 of 49

7.2. Summary report of CARRE’s RESTful API performance testing

Table 32 shows the summary report from the Apache JMeter performance testing. The table shows that no errors produced during the testing. The first rows of the
table report on methods concerning fetching of measurement data. These methods have a response time of a few seconds and produce relatively big JSON objects.
Other methods such as user profile lookup are very fast and are produced in a few milliseconds (ms). Furthermore, methods that invoke external data sources appear
to respond very fast. This low response time is due to the caching mechanism implemented (see discussion in previous section). Finally, the most intense method
constitutes the Calendar-based generation of summary report for a user. This method is typically accessed once or twice daily by a calendar application and is indeed
expected to be computationally expensive, since it scans all triples within a private graph and computes aggregates for each measurement and day.

Table 32: Apache JMeter summary report for CARRE's RESTFul API.

Method

Samples

Average
(ms)

Min
(ms) Max (ms)

Std. Dev.
(ms) Error %

Throughput
(requests/min) KB/sec Avg. Bytes

measurement 500 2783 1044 9630 463.99 0.00% 28.30 5.53 11997

measurementManufacturer 500 701 443 7504 353.66 0.00% 28.34 125.8 272722

measurementsList 500 1331 530 7917 364.25 0.00% 28.34 0.55 1188

dailyMeasurement 500 1465 528 1919 208.2 0.00% 28.34 0.12 262

userProfile 500 115 58 6361 285.7 0.00% 28.38 0.12 256

userManufacturer 500 174 101 6654 410.83 0.00% 28.38 0.12 252

icalToken 500 12615 4846 19529 1135.57 0.00% 28.26 26.03 56606

instances 500 317 116 977 138.14 0.00% 28.62 39.19 84117

RiskEvidencePublications 500 98 55 613 53.75 0.00% 28.63 0.08 170

PUBMedPublication 500 544 59 1296 315.65 0.00% 28.62 2.74 5892

UMLsCUI 500 642 74 1293 322.77 0.00% 28.62 7.85 16863

BioPortalUnitDesc 500 164 53 1621 99.08 0.00% 28.64 0.07 152

BioPortalMeasurementDesc 500 251 52 1143 112.09 0.00% 28.64 0.07 152

TOTAL 6500 1631 52 19529 3281.35 0.00% 364.70 205.76 34663.8

Annex 1 Beta Testers Consent Form

 D.7.2: Aggregator testing and integration

FP7-ICT-61140 page 48 of 49

Consent form of BETA Testers

in CARRE Project

I, the undersigned ___ (first name, last name), born on
the ________________ (date), in _______________________________________ (city, country) and
resident at __ (address), reachable via
___________________________________ (e-mail-address), declare by the present consent form my
agreement to the processing of my personal data (medical or not) on the CARRE private RDF repository in
particular by transferring data from (please check that you agree):

 Sensor Data Aggregator

 Fitbit

 Medisana

 Withings

 iHealth

 eMotion Faros

 Google Fit

 Moves

 Personal Health Records Aggregator

 Vivaport

 HealthVault

 Manual Data Entry System

 Web Lifestyle Data Aggregator

 Only intentions from web searches (Google, Bing and Yahoo) that are relevant to CARRE (travel
and health intentions) and not the actual web queries.

for the purposes of scientific development and validation of the European research project CARRE (Grant
agreement no: 611140) (http://carre-project.eu/).

The CARRE project investigates information and communication technologies for empowering patients with
comorbidities (multiple co-occurring medical conditions), or persons with increased risk of such conditions,
especially in the case of chronic cardiac and renal disease patients. At the present time, as part of the technical
development of this environment, the CARRE project wishes to use the data for the testing of implemented
aggregators that was developed in this context. The intention is to allow the data collected by the above
mentioned apps, devices and services to be linked within the CARRE private RDF repository only, and
accessible to each user in low level.

I am aware that all necessary state-of-the-art security measures are incorporated in the platform to protect my
data against accidental or unlawful destruction or accidental loss, alteration, unauthorized disclosure or access
or any other misuse.

I understand and agree that all data that I collect and provide to the project by using the above mentioned
services may for the project duration be stored and used by the institutions participating in the project (as listed
on the project website) in a public cloud that may use servers located outside the EU/EEA (and may provide
a level of privacy protection lower than that offered by EU data protection legislation).

 D.7.2: Aggregator testing and integration

FP7-ICT-61140 page 49 of 49

Furthermore, I am aware of the fact that the above mentioned devices, apps and the services are subject to
their own third party privacy rules (from the device-manufacturers, e.g. FitBit) and that the project has
no control over data processing by such parties.

I understand that the institutions participating in the project are the only entities which have access to the data
which I have uploaded to the private RDF repository of every user.

In case of any change to the above position, and in particular if the functions of CARRE will change, if additional
apps, devices and other services will be linked to the CARRE private RDF repository, or if it is planned to make
the demo platform public or use the data for any other purposes than those mentioned, the project will inform
me by using my address or e-mail-address (as specified by me) for additional consent.

I have been given the opportunity to ask questions about the processing of my data and I have had these
answered satisfactorily.

I am aware that my participation is voluntary and that I will not suffer adverse consequences for refusing to
grant consent. I understand that I have the right at any time to withdraw my consent to the processing of my
data on the platform without giving any reason. In the event of wishing to do so or having other concerns I may
contact the coordinator Prof. Eleni Kaldoudi (kaldoudi@med.duth.gr) at Democritus University of Thrace. In
this case, my uploaded data will be permanently deleted from the private RDF repository.

A copy of this agreement will be sent to my address/e-mail-address (as specified by me) and another copy will
be retained for record-keeping by the project.

__
DD MM YYYY, “First name, last name, signature”

